A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network

被引:1
|
作者
Prabhakar, Sunil Kumar [1 ]
Rajaguru, Harikumar [2 ]
So, Kwangsub [1 ]
Won, Dong-Ok [1 ]
机构
[1] Hallym Univ, Dept Artificial Intelligence Convergence, Chunchon, South Korea
[2] Bannari Amman Inst Technol, Dept ECE, Sathyamangalam, India
关键词
natural language processing; Differential Evolution; Particle Swarm Optimization; Convolutional Neural Network; deep neural network; DIFFERENTIAL EVOLUTION; FEATURE-SELECTION; DECISION TREES; OPTIMIZATION; ATTENTION; CLASSIFIERS; ALGORITHM; MODEL;
D O I
10.3389/fncom.2022.900885
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To classify the texts accurately, many machine learning techniques have been utilized in the field of Natural Language Processing (NLP). For many pattern classification applications, great success has been obtained when implemented with deep learning models rather than using ordinary machine learning techniques. Understanding the complex models and their respective relationships within the data determines the success of such deep learning techniques. But analyzing the suitable deep learning methods, techniques, and architectures for text classification is a huge challenge for researchers. In this work, a Contiguous Convolutional Neural Network (CCNN) based on Differential Evolution (DE) is initially proposed and named as Evolutionary Contiguous Convolutional Neural Network (ECCNN) where the data instances of the input point are considered along with the contiguous data points in the dataset so that a deeper understanding is provided for the classification of the respective input, thereby boosting the performance of the deep learning model. Secondly, a swarm-based Deep Neural Network (DNN) utilizing Particle Swarm Optimization (PSO) with DNN is proposed for the classification of text, and it is named Swarm DNN. This model is validated on two datasets and the best results are obtained when implemented with the Swarm DNN model as it produced a high classification accuracy of 97.32% when tested on the BBC newsgroup text dataset and 87.99% when tested on 20 newsgroup text datasets. Similarly, when implemented with the ECCNN model, it produced a high classification accuracy of 97.11% when tested on the BBC newsgroup text dataset and 88.76% when tested on 20 newsgroup text datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 732 - 735
  • [32] Facial Expression Classification Using Deep Convolutional Neural Network
    Choi, In-kyu
    Ahn, Ha-eun
    Yoo, Jisang
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (01) : 485 - 492
  • [33] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [34] Plant species classification using deep convolutional neural network
    Dyrmann, Mads
    Karstoft, Henrik
    Midtiby, Henrik Skov
    [J]. BIOSYSTEMS ENGINEERING, 2016, 151 : 72 - 80
  • [35] Rocket Image Classification Based on Deep Convolutional Neural Network
    Zhang, Liang
    Chen, Zhenhua
    Wang, Jian
    Huang, Zhaodun
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 383 - 386
  • [36] Chromosome Classification with Convolutional Neural Network based Deep Learning
    Zhang, Wenbo
    Song, Sifan
    Bai, Tianming
    Zhao, Yanxin
    Ma, Fei
    Su, Jionglong
    Yu, Limin
    [J]. 2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [37] Accurate Oracle Classification Based on Deep Convolutional Neural Network
    Yang, Zhen
    Wang, Qiqi
    He, Xiuying
    Liu, Yang
    Yang, Fan
    Yin, Zhijian
    Yao, Chen
    [J]. 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 1188 - 1191
  • [38] Deep Convolutional Neural Network based Ship Images Classification
    Mishra, Narendra Kumar
    Kumar, Ashok
    Choudhury, Kishor
    [J]. DEFENCE SCIENCE JOURNAL, 2021, 71 (02) : 200 - 208
  • [39] A Deep Convolutional Neural Network Based Framework for Pneumonia Detection
    Jamil, Sonain
    Abbas, Muhammad Sohail
    Fawad
    Zia, Muhammad Faisal
    Rahman, Muhib Ur
    [J]. 2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [40] PolSAR image classification based on deep convolutional neural network
    Wang, Yunyan
    Wang, Gaihua
    Lan, Yihua
    [J]. Metallurgical and Mining Industry, 2015, 7 (08): : 366 - 371