A gradational reduction approach for mining sequential patterns

被引:0
|
作者
Huang, Jen-Peng [2 ]
Lan, Guo-Cheng [2 ]
Kuo, Huang-Cheng [1 ]
机构
[1] Natl Chiayi Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
[2] Southern Taiwan Univ Technol, Dept Informat Management, Tainan, Taiwan
关键词
data mining; sequential patterns; algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The technology of data mining is more important in recent years, and it is generally applied to commercial forecast and decision supports. Sequential pattern mining algorithms in the field of data mining play one of the important roles. Many of sequential pattern mining algorithms were proposed to improve the efficiency of data mining or save the utility rate of memory. So, our major study tries to improve the efficiency of sequential pattern mining algorithms. We propose a new algorithm - GRS (A Gradational Reduction Approach for Mining Sequential Patterns) which is an efficient algorithm of mining sequential patterns. GRS algorithm uses gradational reduction mechanism to reduce the length of transactions and uses GraDec function to avoid generating large number of infrequent sequential patterns; and it is very suitable to mine the transactions of databases whose record lengths are very long. The GRS algorithm only generates some sequences which are very possible to be frequent. So, the GRS algorithm can decrease a large number of infrequent sequences and increase the utility rate of memory.
引用
收藏
页码:562 / +
页数:2
相关论文
共 50 条
  • [31] Mining Heterogeneous Multidimensional Sequential Patterns
    Egho, Elias
    Raissi, Chedy
    Jay, Nicolas
    Napoli, Amedeo
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 279 - 284
  • [32] Mining Multidimensional and Multilevel Sequential Patterns
    Plantevit, Marc
    Laurent, Anne
    Laurent, Dominique
    Teisseire, Maguelonne
    Choong, Yeow Wei
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2010, 4 (01)
  • [33] Mining sequential patterns with negative conclusions
    Kazienko, Przemyslaw
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 423 - 432
  • [34] Mining sequential patterns with item constraints
    Yen, SJ
    Lee, YS
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2004, 3181 : 381 - 390
  • [35] Fast mining of closed sequential patterns
    Department of Computer Science and Information Engineering, Tamkang University, 151 Ying-Chuan Road, Tamsui, Taipei, Taiwan
    [J]. WSEAS Trans. Comput., 2008, 3 (133-139):
  • [36] Targeted mining of contiguous sequential patterns
    Hu, Kaixia
    Gan, Wensheng
    Huang, Shan
    Peng, Hao
    Fournier-Viger, Philippe
    [J]. INFORMATION SCIENCES, 2024, 653
  • [37] Mining sequential patterns with itemset constraints
    Trang Van
    Bay Vo
    Bac Le
    [J]. Knowledge and Information Systems, 2018, 57 : 311 - 330
  • [38] Mining Significant Sequential Contrast Patterns
    Conklin, Darrell
    [J]. MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024, 2024, 14639 : 387 - 392
  • [39] Mining approximate sequential patterns with gaps
    Yip, Kelly K.
    Nembhard, David A.
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2015, 7 (02) : 108 - 129
  • [40] An algorithm for mining generalized sequential patterns
    Ren, JD
    Cheng, YB
    Yang, LL
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1288 - 1292