A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest

被引:17
|
作者
Ahlm, L. [1 ]
Nilsson, E. D. [1 ]
Krejci, R. [1 ]
Martensson, E. M. [1 ]
Vogt, M. [1 ]
Artaxo, P. [2 ]
机构
[1] Stockholm Univ, Dept Appl Environm Sci, Stockholm, Sweden
[2] Univ Sao Paulo, Inst Phys, BR-05508 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
BIOMASS-BURNING EMISSIONS; PHYSICAL-PROPERTIES; SIZE DISTRIBUTION; BOUNDARY-LAYER; SUBMICROMETER AEROSOL; EDDY COVARIANCE; PART I; PARTICLES; CLOUDS; DEPOSITION;
D O I
10.5194/acp-10-3063-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
引用
收藏
页码:3063 / 3079
页数:17
相关论文
共 50 条
  • [31] THE BURNING SEASON - THE MURDER OF MENDES,CHICO AND THE FIGHT FOR THE AMAZON RAIN-FOREST - REVKIN,A
    ROCHA, J
    [J]. TLS-THE TIMES LITERARY SUPPLEMENT, 1991, (4580): : 7 - 7
  • [33] THE BURNING SEASON - THE MURDER OF MENDES,CHICO AND THE FIGHT FOR THE AMAZON RAIN-FOREST - REVKIN,A
    MELVILLE, J
    [J]. NEW STATESMAN & SOCIETY, 1990, 3 (115): : 36 - 37
  • [34] THE BURNING SEASON - THE MURDER OF MENDES,CHICO AND THE FIGHT FOR THE AMAZON RAIN-FOREST - REVKIN,A
    GRAEBER, L
    [J]. NEW YORK TIMES BOOK REVIEW, 1994, : 36 - 36
  • [35] Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season
    Whitehead, James D.
    Darbyshire, Eoghan
    Brito, Joel
    Barbosa, Henrique M. J.
    Crawford, Ian
    Stern, Rafael
    Gallagher, Martin W.
    Kaye, Paul H.
    Allan, James D.
    Coe, Hugh
    Artaxo, Paulo
    McFiggans, Gordon
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (15) : 9727 - 9743
  • [37] THE BURNING SEASON, THE MURDER OF MENDES,CHICO AND THE FIGHT FOR THE AMAZON RAIN-FOREST - REVKIN,A
    BROOKE, J
    [J]. NEW YORK TIMES BOOK REVIEW, 1990, : 7 - 7
  • [39] Variations of Carbonyl Sulfide During the Dry/Wet Seasons Over the Amazon
    Wang, Xinyue
    Jiang, Xun
    Li, King-Fai
    Liang, Mao-Chang
    Kuai, Le
    Tan, Lin
    Yung, Yuk L. L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (05)
  • [40] Impact of atmospheric aerosol from biomass burning on Amazon dry-season drought
    Bevan, Suzanne L.
    North, Peter R. J.
    Grey, William M. F.
    Los, Sietse O.
    Plummer, Stephen E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114