Poisson-Lie T-plurality as canonical transformation

被引:6
|
作者
Hlavaty, Ladislav [1 ]
Snobl, Libor [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, CR-11519 Prague 1, Czech Republic
关键词
Poisson-Lie T-plurality; sigma models; canonical transformation;
D O I
10.1016/j.nuclphysb.2007.01.017
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We generalize the prescription realizing classical Poisson-Lie T-duality as canonical transformation to Poisson-Lie T-plurality. The key ingredient is the transformation of left-invariant fields under Poisson-Lie T-plurality. Explicit formulae realizing canonical transformation are presented and the preservation of canonical Poisson brackets and Hamiltonian density is shown. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [21] T-folds as Poisson-Lie plurals
    Hlavaty, Ladislav
    Petr, Ivo
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [22] SU(2) Poisson-Lie T duality
    Lledo, MA
    Varadarajan, VS
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (03) : 247 - 257
  • [23] POISSON-LIE STRUCTURE ON THE TANGENT BUNDLE OF A POISSON-LIE GROUP, AND POISSON ACTION LIFTING
    Boumaiza, Mohamed
    Zaalani, Nadhem
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2005, 4 : 1 - 18
  • [24] Poisson-Lie T-duality for quasitriangular Lie bialgebras
    Beggs, EJ
    Majid, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) : 455 - 488
  • [25] LIE SUPERBIALGEBRAS AND POISSON-LIE SUPERGROUPS
    ANDRUSKIEWITSCH, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 147 - 163
  • [26] POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS
    Montani, H.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (01): : 71 - 82
  • [27] Quantum equivalence in Poisson-Lie T-duality
    Sfetsos, Konstadinos
    Siampos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [28] Mirror symmetry as a Poisson-Lie T-duality
    Parkhomenko, SE
    MODERN PHYSICS LETTERS A, 1998, 13 (13) : 1041 - 1054
  • [29] Poisson-Lie T-Duality and Courant Algebroids
    Severa, Pavol
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (12) : 1689 - 1701
  • [30] The Poisson-Lie T-duality and zero modes
    Klimcík, C
    Parkhomenko, SE
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (03) : 834 - 845