Orbital forcing of the Paleocene and Eocene carbon cycle

被引:57
|
作者
Zeebe, Richard E. [1 ]
Westerhold, Thomas [2 ]
Littler, Kate [3 ]
Zachos, James C. [4 ]
机构
[1] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
[2] Univ Bremen, MARUM, Bremen, Germany
[3] Univ Exeter, Camborne Sch Mines, Penryn, England
[4] Univ Calif Santa Cruz, Earth & Planetary Sci Dept, Santa Cruz, CA 95064 USA
来源
PALEOCEANOGRAPHY | 2017年 / 32卷 / 05期
关键词
orbital forcing; Paleocene; Eocene; carbon cycle; climate; ASTRONOMICAL CALIBRATION; CLIMATE; TIME; SCALE; EVOLUTION; RECORD; OCEAN; AIR; HYPERTHERMALS; EXCURSIONS;
D O I
10.1002/2016PA003054
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Multimillion-year proxy records across the Paleocene and Eocene show prominent variations on orbital time scales. The cycles, which have been identified at various sites across the globe, preferentially concentrate spectral power at eccentricity and precessional frequencies. It is evident that these cycles are an expression of changes in global climate and carbon cycling paced by astronomical forcing. However, little is currently known about the link between orbital forcing and the carbon cycle-climate system and the amplitude of associated atmospheric CO2 variations. Here we use simple and complex carbon cycle models to explore the basic effect of different orbital forcing schemes and noise on the carbon cycle. Our primary modeling target is the high-resolution, approximate to 7.7Myr long, benthic isotope record at Ocean Drilling Program Site 1262 in the South Atlantic. For direct insolation forcing (as opposed to artificial eccentricity-tilt-precession), one major challenge is understanding how the system transfers spectral power from high to low frequencies. We discuss feasible solutions, including insolation transformations analogous to electronic AC-DC conversion (DC'ing). Regarding mechanisms, we focus on tropical insolation and a long-term carbon imbalance in terrestrial organic burial/oxidation but do not rule out other scenarios. Our analysis shows that high-latitude mechanisms are unlikely drivers of orbitally paced changes in the late Paleocene-early Eocene (LPEE) Earth system. Furthermore, we provide constraints on the origin and isotopic composition of a possible LPEE cyclic carbon imbalance/source responding to astronomical forcing. Our simulations also reveal a mechanism for the large C-13-eccentricity lag at the 400kyr period observed in Paleocene, Oligocene, and Miocene sections. We present the first estimates of orbital-scale variations in atmospheric CO2 during the late Paleocene and early Eocene.
引用
收藏
页码:440 / 465
页数:26
相关论文
共 50 条
  • [41] Stratigraphic note: Orbital-forcing calibration of the Late Cretaceous and Paleocene Aruma Formation, Saudi Arabia
    Al-Husseini, M
    Matthews, RK
    GEOARABIA, 2005, 10 (03): : 173 - 176
  • [42] Changes in the hydrological cycle in tropical East Africa during the Paleocene-Eocene Thermal Maximum
    Handley, Luke
    O'Halloran, Aoife
    Pearson, Paul N.
    Hawkins, Elizabeth
    Nicholas, Christopher J.
    Schouten, Stefan
    McMillan, Ian K.
    Pancost, Richard D.
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2012, 329 : 10 - 21
  • [43] Cyclicity in the middle Eocene central Arctic Ocean sediment record:: Orbital forcing and environmental response
    Sangiorgi, Francesca
    van Soelen, Els E.
    Spofforth, David J. A.
    Palike, Heiko
    Stickley, Catherine E.
    St. John, Kristen
    Koc, Nalan
    Schouten, Stefan
    Damste, Jaap S. Sinninghe
    Brinkhuis, Henk
    PALEOCEANOGRAPHY, 2008, 23 (01):
  • [44] Impact of Paleocene-Eocene tectonic and climatic forcing on Arctic sediment transfer variability: SW Barents Sea, Norway
    Lasabuda, Amando P. E.
    Chiarella, Domenico
    Somme, Tor Oftedal
    Grundvag, Sten-Andreas
    Eikelmann, Isak
    Knutsen, Stig-Morten
    Dore, Anthony George
    Laberg, Jan Sverre
    Rydningen, Tom Arne
    Hanssen, Alfred
    Kjolhamar, Bent
    MARINE GEOLOGY, 2025, 480
  • [45] Warming and Carbon Injection at the Paleocene-Eocene Boundary: Bayesian Modeling Supports Synchroneity
    Makarova, Maria
    Schmelz, William J.
    Miller, Kenneth G.
    Herbert, Timothy D.
    Podrecca, Luca G.
    Browning, James V.
    Mortlock, Richard A.
    Godfrey, Linda V.
    Wright, James D.
    PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2025, 40 (01)
  • [46] Carbon isotope excursion at Paleocene–Eocene transition in Jaisalmer Basin, western Rajasthan, India
    Anil Maheshwari
    A. N. Sial
    S. C. Mathur
    Amita Tripathi
    Carbonates and Evaporites, 2010, 25 : 269 - 274
  • [47] Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum
    Zhang, Qinghai
    Wendler, Ines
    Xu, Xiaoxia
    Willems, Helmut
    Ding, Lin
    GONDWANA RESEARCH, 2017, 46 : 114 - 123
  • [48] A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion
    Kent, DV
    Cramer, BS
    Lanci, L
    Wang, D
    Wright, JD
    Van der Voo, R
    EARTH AND PLANETARY SCIENCE LETTERS, 2003, 211 (1-2) : 13 - 26
  • [49] Enhanced petrogenic organic carbon oxidation during the Paleocene-Eocene thermal maximum
    Hollingsworth, E. H.
    Sparkes, R. B.
    Self-Trail, J. M.
    Foster, G. L.
    Inglis, G. N.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2024, 33 : 1 - 6
  • [50] Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n) -: art. no. 1097
    Cramer, BS
    Wright, JD
    Kent, DV
    Aubry, MP
    PALEOCEANOGRAPHY, 2003, 18 (04):