Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble

被引:18
|
作者
Xiong, Yueling [1 ]
Ye, Mingquan [1 ]
Wu, Changrong [2 ]
机构
[1] Wannan Med Coll, Sch Med Informat, Wuhu 241002, Peoples R China
[2] Anhui Normal Univ, Sch Comp & Informat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTICLE SWARM OPTIMIZATION; FEATURE-SELECTION; NEURAL-NETWORK; MACHINE;
D O I
10.1155/2021/5556992
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Cost-sensitive ensemble learning: a unifying framework
    George Petrides
    Wouter Verbeke
    Data Mining and Knowledge Discovery, 2022, 36 : 1 - 28
  • [32] Evolutionary Cost-Sensitive Ensemble for Malware Detection
    Krawczyk, Bartosz
    Wozniak, Michal
    INTERNATIONAL JOINT CONFERENCE SOCO'14-CISIS'14-ICEUTE'14, 2014, 299 : 433 - 442
  • [33] Active Learning for Cost-Sensitive Classification
    Krishnamurthy, Akshay
    Agarwal, Alekh
    Huang, Tzu-Kuo
    Daume, Hal, III
    Langford, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [34] Hybrid cost-sensitive fuzzy classification for breast cancer diagnosis
    Schaefer, Gerald
    Nakashima, Tomoharu
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 6170 - 6173
  • [35] Adaptive Cost-Sensitive Online Classification
    Zhao, Peilin
    Zhang, Yifan
    Wu, Min
    Hoi, Steven C. H.
    Tan, Mingkui
    Huang, Junzhou
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (02) : 214 - 228
  • [36] COST-SENSITIVE STACKING FOR AUDIO TAG ANNOTATION AND RETRIEVAL
    Lo, Hung-Yi
    Wang, Ju-Chiang
    Wang, Hsin-Min
    Lin, Shou-De
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2308 - 2311
  • [37] Cost-sensitive classification with genetic programming
    Li, J
    Li, XL
    Yao, X
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2114 - 2121
  • [38] Active learning for cost-sensitive classification
    Krishnamurthy, Akshay
    Agarwal, Alekh
    Huang, Tzu-Kuo
    Daumé Iii, Hal
    Langford, John
    Journal of Machine Learning Research, 2019, 20
  • [39] Linear models for cost-sensitive classification
    Pendharkar, Parag C.
    EXPERT SYSTEMS, 2015, 32 (05) : 622 - 636
  • [40] Cost-sensitive feature acquisition and classification
    Ji, Shihao
    Carin, Lawrence
    PATTERN RECOGNITION, 2007, 40 (05) : 1474 - 1485