MTGO-SC, A Tool to Explore Gene Modules in Single-Cell RNA Sequencing Data

被引:2
|
作者
Nazzicari, Nelson [1 ]
Vella, Danila [2 ,3 ]
Coronnello, Claudia [4 ]
Di Silvestre, Dario [5 ]
Bellazzi, Riccardo [3 ,6 ]
Marini, Simone [6 ,7 ]
机构
[1] Council Agr Res & Econ CREA, Res Ctr Fodder Crops & Dairy Prod, Lodi, Italy
[2] Ri MED Fdn, Bioengn Unit, Palermo, Italy
[3] Ist Clin Sci Maugeri, Pavia, Italy
[4] Ri MED Fdn, Computat Biol Unit, Palermo, Italy
[5] CNR, Inst Biomed Technol, Segrate, Italy
[6] Univ Pavia, Dept Elect Comp & Biomed Engn, Ctr Hlth Technol, Pavia, Italy
[7] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA
关键词
single cell; RNA-seq; enrichment; gene network; clustering; gene module; annotation; scRNA-seq;
D O I
10.3389/fgene.2019.00953
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The identification of functional modules in gene interaction networks is a key step in understanding biological processes. Network interpretation is essential for unveiling biological mechanisms, candidate biomarkers, or potential targets for drug discovery/repositioning. Plenty of biological module identification algorithms are available, although none is explicitly designed to perform the task on single-cell RNA sequencing (scRNAseq) data. Here, we introduce MTGO-SC, an adaptation for scRNA-seq of our biological network module detection algorithm MTGO. MTGO-SC isolates gene functional modules by leveraging on both the network topological structure and the annotations characterizing the nodes (genes). These annotations are provided by an external source, such as databases and literature repositories (e.g., the Gene Ontology, Reactome). Thanks to the depth of single-cell data, it is possible to define one network for each cell cluster (typically, cell type or state) composing each sample, as opposed to traditional bulk RNA-seq, where the emerging gene network is averaged over the whole sample. MTGO-SC provides two complexity levels for interpretation: the gene-gene interaction and the intermodule interaction networks. MTGO-SC is versatile in letting the users define the rules to extract the gene network and integrated with the Seurat scRNA-seq analysis pipeline. MTGO-SC is available at https://github.com/ne1s0n/MTGOsc.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    [J]. Genome Biology, 14
  • [42] Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis
    Kujawa, Tomasz
    Marczyk, Michal
    Polanska, Joanna
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [43] Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression
    Nassiri, Isar
    Kwok, Andrew J.
    Bhandari, Aneesha
    Bull, Katherine R.
    Garner, Lucy C.
    Klenerman, Paul
    Webber, Caleb
    Parkkinen, Laura
    Lee, Angela W.
    Wu, Yanxia
    Fairfax, Benjamin
    Knight, Julian C.
    Buck, David
    Piazza, Paolo
    [J]. BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [44] Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
    Tianyu Wang
    Boyang Li
    Craig E. Nelson
    Sheida Nabavi
    [J]. BMC Bioinformatics, 20
  • [45] Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis
    Lu Yang
    Yan Er Ng
    Haipeng Sun
    Ying Li
    Lucas C. S. Chini
    Nathan K. LeBrasseur
    Jun Chen
    Xu Zhang
    [J]. BMC Biology, 21
  • [46] SkewC: Identifying cells with skewed gene body coverage in single-cell RNA sequencing data
    Abugessaisa, Imad
    Hasegawa, Akira
    Noguchi, Shuhei
    Cardon, Melissa
    Watanabe, Kazuhide
    Takahashi, Masataka
    Suzuki, Harukazu
    Katayama, Shintaro
    Kere, Juha
    Kasukawa, Takeya
    [J]. ISCIENCE, 2022, 25 (02)
  • [47] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    [J]. GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [48] Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis
    Yang, Lu
    Ng, Yan Er
    Sun, Haipeng
    Li, Ying
    Chini, Lucas C. S.
    Lebrasseur, Nathan K.
    Chen, Jun
    Zhang, Xu
    [J]. BMC BIOLOGY, 2023, 21 (01)
  • [49] SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    [J]. METHODS, 2018, 145 : 25 - 32
  • [50] iS-CellR: a user-friendly tool for analyzing and visualizing single-cell RNA sequencing data
    Patel, Mitulkumar V.
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4305 - 4306