Approximation by Hidden Variable Fractal Functions: A Sequential Approach

被引:9
|
作者
Vijender, N. [1 ]
机构
[1] Indian Inst Informat Technol Nagpur, Dept Basic Sci & Engn, Nagpur 440006, Maharashtra, India
关键词
Hidden variable fractal approximation; convergence; irregularity; non-self-referential; self-referential; constrained fractal approximation; INTERPOLATION FUNCTIONS; CONSTRUCTION;
D O I
10.1007/s00025-019-1114-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hidden variable fractal approximation is more diverse than classical fractal approximation. The main goal of the article is to establish new kind of hidden variable fractal approximants which possess convergence and non-differentiability simultaneously for any choice of the scaling factors. Without imposing any condition on the scaling vector, we establish the constrained approximation by the proposed hidden variable fractal approximants. By imposing suitable conditions on the scaling factors, we study the calculus of proposed hidden variable fractal approximants. We identify the suitable conditions for the parameters of hidden variable iterated function system so that the proposed hidden variable fractal functions preserve fundamental shape properties such as monotonicity and convexity in addition to the smoothness of the original function in the given compact interval.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] ISOGEOMETRIC APPROXIMATION OF FUNCTIONS OF ONE VARIABLE
    GREBENNIKOV, AI
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (06): : 42 - 50
  • [42] THEORY OF APPROXIMATION OF FUNCTIONS OF A REAL VARIABLE
    GODDARD, LS
    [J]. NATURE, 1965, 205 (4976) : 1041 - &
  • [43] CONSTRAINED FRACTAL INTERPOLATION FUNCTIONS WITH VARIABLE SCALING
    Chand, A. K. B.
    Reddy, K. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 60 - 73
  • [44] Variable order fractional calculus on α-fractal functions
    Valarmathi, R.
    Gowrisankar, A.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (04): : 2799 - 2815
  • [45] On the stability of Fractal interpolation functions with variable parameters
    Attia, Najmeddine
    Saidi, Neji
    Amami, Rim
    Amami, Rimah
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 2908 - 2924
  • [46] NEW NONLINEAR RECURRENT HIDDEN VARIABLE FRACTAL INTERPOLATION SURFACES
    Kim, Hyonjin
    Kim, Jinmyong
    Mun, Hakmyong
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (02)
  • [47] SMOOTHNESS OF COALESCENCE HIDDEN-VARIABLE FRACTAL INTERPOLATION SURFACES
    Kapoor, G. P.
    Prasad, Srijanani Anurag
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2321 - 2333
  • [48] RIEMANN SEQUENTIAL APPROXIMATION OF CONTINUOUS-FUNCTIONS
    CAMPITI, M
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (01): : 143 - 154
  • [49] Approximation properties of bivariate α-fractal functions and dimension results
    Jha, Sangita
    Chand, A. K. B.
    Navascues, M. A.
    Sahu, Abhilash
    [J]. APPLICABLE ANALYSIS, 2021, 100 (16) : 3426 - 3444
  • [50] A HIDDEN VARIABLE APPROACH TO CONSTRAINED SOLIDS
    MORRO, A
    [J]. ARCHIVES OF MECHANICS, 1982, 34 (02): : 165 - 177