A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model

被引:8
|
作者
Kuo, Tzu-Chun [1 ]
Sheng, Yanyan [1 ]
机构
[1] So Illinois Univ, Dept Counseling Quantitat Methods & Special Educ, Carbondale, IL 62901 USA
来源
FRONTIERS IN PSYCHOLOGY | 2016年 / 7卷
关键词
item response theory; multi-unidimensional model; Markov chain Monte Carlo; MML; fully Bayesian; graded response model; IRTPRO; BMIRT; MAXIMUM-LIKELIHOOD-ESTIMATION; ITEM FACTOR-ANALYSIS; MONTE-CARLO; PARAMETERS; RECOVERY;
D O I
10.3389/fpsyg.2016.00880
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
This study compared several parameter estimation methods for multi-unidimensional graded response models using their corresponding statistical software programs and packages. Specifically, we compared two marginal maximum likelihood (MML) approaches (Bock-Aitkin expectation-maximum algorithm, adaptive quadrature approach), four fully Bayesian algorithms (Gibbs sampling, Metropolis-Hastings, Hastings-within-Gibbs, blocked Metropolis), and the Metropolis-Hastings Robbins-Monro (MHRM) algorithm via the use of IRTPRO, BMIRT, and MATLAB. Simulation results suggested that, when the intertrait correlation was low, these estimation methods provided similar results. However, if the dimensions were moderately or highly correlated, Hastings-within-Gibbs had an overall better parameter recovery of item discrimination and intertrait correlation parameters. The performances of these estimation methods with different sample sizes and test lengths are also discussed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bayesian Estimation of a Multi-Unidimensional Graded Response IRT Model
    Tzu-Chun Kuo
    Yanyan Sheng
    [J]. Behaviormetrika, 2015, 42 (2) : 79 - 94
  • [2] A MATLAB Package for Markov Chain Monte Carlo with a Multi-Unidimensional IRT Model
    Sheng, Yanyan
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 28 (10): : 1 - 20
  • [3] Bayesian Estimation of the Three-Parameter Multi-Unidimensional Model
    Sheng, Yanyan
    [J]. NEW DEVELOPMENTS IN QUANTITATIVE PSYCHOLOGY, 2013, 66 : 69 - 83
  • [4] Comparison of parameter estimation approaches for multi-unidimensional pairwise preference tests
    Tu, Naidan
    Joo, Sean
    Lee, Philseok
    Stark, Stephen
    [J]. BEHAVIOR RESEARCH METHODS, 2023, 55 (06) : 2764 - 2786
  • [5] Comparison of parameter estimation approaches for multi-unidimensional pairwise preference tests
    Naidan Tu
    Sean Joo
    Philseok Lee
    Stephen Stark
    [J]. Behavior Research Methods, 2023, 55 : 2764 - 2786
  • [6] A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis
    Huo, Yan
    de la Torre, Jimmy
    Mun, Eun-Young
    Kim, Su-Young
    Ray, Anne E.
    Jiao, Yang
    White, Helene R.
    [J]. PSYCHOMETRIKA, 2015, 80 (03) : 834 - 855
  • [7] A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis
    Yan Huo
    Jimmy de la Torre
    Eun-Young Mun
    Su-Young Kim
    Anne E. Ray
    Yang Jiao
    Helene R. White
    [J]. Psychometrika, 2015, 80 : 834 - 855
  • [8] Linking Methods for Multidimensional Forced Choice Tests Using the Multi-Unidimensional Pairwise Preference Model
    Tu, Naidan
    Kumar, Lavanya S.
    Joo, Sean
    Stark, Stephen
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2024, 48 (03) : 104 - 124
  • [9] An IRT approach to constructing and scoring pairwise preference items involving stimuli on different dimensions: The multi-unidimensional pairwise-preference model
    Stark, S
    Chernyshenko, OS
    Drasgow, F
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2005, 29 (03) : 184 - 203
  • [10] Estimation of IRT Graded Response Models: Limited Versus Full Information Methods
    Forero, Carlos G.
    Maydeu-Olivares, Alberto
    [J]. PSYCHOLOGICAL METHODS, 2009, 14 (03) : 275 - 299