A MATLAB Package for Markov Chain Monte Carlo with a Multi-Unidimensional IRT Model

被引:0
|
作者
Sheng, Yanyan [1 ]
机构
[1] So Illinois Univ, Dept Educ Psychol & Special Educ, Carbondale, IL 62901 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2008年 / 28卷 / 10期
关键词
multi-unidimensional IRT; two-parameter normal ogive models; MCMC; Gibbs sampling; Gelman-Rubin R; Bayesian DIC; posterior predictive model checks; MATLAB;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unidimensional item response theory(IRT) models are useful when each item is designed to measure some facet of a unified latent trait. In practical applications, items are not necessarily measuring the same underlying trait, and hence the more general multiunidimensional model should be considered. This paper provides the requisite information and description of software that implements the Gibbs sampler for such models with two item parameters and a normal ogive form. The software developed is written in the MATLAB package IRTmu2no. The package is flexible enough to allow a user the choice to simulate binary response data with multiple dimensions, set the number of total or burn-in iterations, specify starting values or prior distributions for model parameters, check convergence of the Markov chain, as well as obtain Bayesian fit statistics. Illustrative examples are provided to demonstrate and validate the use of the software package.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] A Dominance Variant Under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation
    Morillo, Daniel
    Leenen, Iwin
    Abad, Francisco J.
    Hontangas, Pedro
    de la Torre, Jimmy
    Ponsoda, Vicente
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2016, 40 (07) : 500 - 516
  • [2] Bayesian Estimation of a Multi-Unidimensional Graded Response IRT Model
    Tzu-Chun Kuo
    Yanyan Sheng
    [J]. Behaviormetrika, 2015, 42 (2) : 79 - 94
  • [3] Markov chain Monte Carlo estimation of normal ogive IRT models in MATLAB
    Sheng, Yanyan
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (08): : 1 - 15
  • [4] A Comparison of Estimation Methods for a Multi-unidimensional Graded Response IRT Model
    Kuo, Tzu-Chun
    Sheng, Yanyan
    [J]. FRONTIERS IN PSYCHOLOGY, 2016, 7
  • [5] Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation
    Vrugt, Jasper A.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 75 : 273 - 316
  • [6] sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
    Baker, Jack
    Fearnhead, Paul
    Fox, Emily B.
    Nemeth, Christopher
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (03): : 1 - 27
  • [7] Bayesian Estimation of the Three-Parameter Multi-Unidimensional Model
    Sheng, Yanyan
    [J]. NEW DEVELOPMENTS IN QUANTITATIVE PSYCHOLOGY, 2013, 66 : 69 - 83
  • [8] A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis
    Huo, Yan
    de la Torre, Jimmy
    Mun, Eun-Young
    Kim, Su-Young
    Ray, Anne E.
    Jiao, Yang
    White, Helene R.
    [J]. PSYCHOMETRIKA, 2015, 80 (03) : 834 - 855
  • [9] Markov Chain Monte Carlo
    Henry, Ronnie
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [10] Monte Carlo Tennis: A Stochastic Markov Chain Model
    Newton, Paul K.
    Aslam, Kamran
    [J]. JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2009, 5 (03)