Volumetric Occupancy Mapping With Probabilistic Depth Completion for Robotic Navigation

被引:0
|
作者
Popovic, Marija [1 ,2 ]
Thomas, Florian [1 ]
Papatheodorou, Sotiris [1 ]
Funk, Nils [1 ]
Vidal-Calleja, Teresa [3 ]
Leutenegger, Stefan [1 ,4 ]
机构
[1] Imperial Coll London, Smart Robot Lab, Dept Comp, London SW7 2AZ, England
[2] Univ Bonn, Cluster Excellence PhenoRob, Inst Geodesy & Geoinformat, D-53115 Bonn, Germany
[3] Univ Technol Sydney, Ctr Autonomous Syst, Fac Engn & IT, Sydney, NSW 2007, Australia
[4] Tech Univ Munich, Smart Robot Lab, Dept Informat, Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
Computer vision; simultaneous localisation and mapping; mobile robots; machine learning;
D O I
10.1109/LRA.2021.3070308
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In robotic applications, a key requirement for safe and efficient motion planning is the ability to map obstacle-free space in unknown, cluttered 3D environments. However, commodity-grade RGB-D cameras commonly used for sensing fail to register valid depth values on shiny, glossy, bright, or distant surfaces, leading to missing data in the map. To address this issue, we propose a framework leveraging probabilistic depth completion as an additional input for spatial mapping. We introduce a deep learning architecture providing uncertainty estimates for the depth completion of RGB-D images. Our pipeline exploits the inferred missing depth values and depth uncertainty to complement raw depth images and improve the speed and quality of free space mapping. Evaluations on synthetic data show that our approach maps significantly more correct free space with relatively low error when compared against using raw data alone in different indoor environments; thereby producing more complete maps that can be directly used for robotic navigation tasks. The performance of our framework is validated using real-world data.
引用
收藏
页码:5072 / 5079
页数:8
相关论文
共 50 条
  • [1] 3D Lidar Reconstruction with Probabilistic Depth Completion for Robotic Navigation
    Tao, Yifu
    Popovic, Marija
    Wang, Yiduo
    Digumarti, Sundara Tejaswi
    Chebrolu, Nived
    Fallon, Maurice
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 5339 - 5346
  • [2] Probabilistic Robotic Grid Mapping based on Occupancy and Elevation Information
    Souza, Anderson
    Maia, Rosiery S.
    Aroca, Rafael V.
    Goncalves, Luiz M. G.
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2013,
  • [3] Occupancy-elevation grid: an alternative approach for robotic mapping and navigation
    Souza, Anderson
    Goncalves, Luiz M. G.
    [J]. ROBOTICA, 2016, 34 (11) : 2592 - 2609
  • [4] SwarMap: Occupancy Grid Mapping with a Robotic Swarm
    Chaves, Rodrigo
    Rezeck, Paulo
    Chaimowicz, Luiz
    [J]. 2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 727 - 732
  • [5] A system for volumetric robotic mapping of abandoned mines
    Thrun, S
    Hähnel, D
    Ferguson, D
    Montemerlo, M
    Triebel, R
    Burgard, W
    Baker, C
    Omohundro, Z
    Thayer, S
    Whittaker, W
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 4270 - 4275
  • [6] Robust and Efficient Volumetric Occupancy Mapping with an Application to Stereo Vision
    Schauwecker, Konstantin
    Zell, Andreas
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 6102 - 6107
  • [7] Application of ultrasonic guided waves to robotic occupancy grid mapping
    Tabatabaeipour, Morteza
    Trushkevych, Oksana
    Dobie, Gordon
    Edwards, Rachel S.
    McMillan, Ross
    Macleod, Charles
    O'Leary, Richard
    Dixon, Steve
    Gachagan, Anthony
    Pierce, Stephen G.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [8] 3D PROBRABILISTIC OCCUPANCY GRID TO ROBOTIC MAPPING
    Souza, Anderson
    Goncalves, Luiz
    [J]. ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2011, : 264 - 269
  • [9] Using a depth camera for crop row detection and mapping for under-canopy navigation of agricultural robotic vehicle
    Gai, Jingyao
    Xiang, Lirong
    Tang, Lie
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 188
  • [10] Learning Probabilistic Features for Robotic Navigation Using Laser Sensors
    Aznar, Fidel
    Pujol, Francisco A.
    Pujol, Mar
    Rizo, Ramon
    Pujol, Maria-Jose
    [J]. PLOS ONE, 2014, 9 (11):