Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation

被引:37
|
作者
Huang, Jing [1 ]
Xu, Bo [2 ]
Yuan, Chunze [1 ]
Chen, Hong [3 ]
Sun, Junliang [3 ]
Sun, Licheng [2 ]
Agren, Hans [1 ]
机构
[1] Royal Inst Technol KTH, Dept Theoret Chem & Biol, Sch Biotechnol, S-10691 Stockholm, Sweden
[2] Royal Inst Technol KTH, Ctr Mol Devices, Dept Chem, Sch Chem Sci & Engn, S-10044 Stockholm, Sweden
[3] Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
quantum dot-sensitized solar cells; colloidal quantum dots; hybrid passivation; solution process; CHARGE-TRANSFER; SEMICONDUCTOR; NANOPARTICLES; EFFICIENCY; ULTRAFAST; SIZE;
D O I
10.1021/am504536a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution effective approach to introduce can be an different ligands.
引用
收藏
页码:18808 / 18815
页数:8
相关论文
共 50 条
  • [41] Investigation of multilayered quantum dot-sensitized solar cells with different Zn chalcogenide passivation layers
    H. K. Jun
    M. A. Careem
    A. K. Arof
    Journal of Applied Electrochemistry, 2014, 44 : 977 - 988
  • [42] Improved Performance of CuInS2 Quantum Dot-Sensitized Solar Cells Based on a Multilayered Architecture
    Chang, Jia-Yaw
    Lin, Jie-Mo
    Su, Li-Fong
    Chang, Chia-Fu
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) : 8740 - 8752
  • [43] Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells
    Ziwei Li
    Zhenxiao Pan
    Xinhua Zhong
    Transactions of Tianjin University, 2022, (05) : 374 - 384
  • [44] Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells
    Jin, Bin Bin
    Kong, Shu Ying
    Zhang, Guo Qing
    Chen, Xing Qiao
    Ni, Hong Shan
    Zhang, Fan
    Wang, Dan Jun
    Zeng, Jing Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 586 : 640 - 646
  • [45] Performance dependence of Si quantum dot-sensitized solar cells on counter electrode
    Seo, Hyunwoong
    Ichida, Daiki
    Uchida, Giichiro
    Itagaki, Naho
    Koga, Kazunori
    Shiratani, Masaharu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (05)
  • [46] Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells
    Jin, Bin Bin
    Wang, Ye Feng
    Wei, Dong
    Cui, Bin
    Chen, Yu
    Zeng, Jing Hui
    APPLIED PHYSICS LETTERS, 2016, 108 (25)
  • [47] Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells by long-persistence phosphors structural layer
    Deng, Yunlong
    Lu, Shuqi
    Xu, Zhiyuan
    Zhang, Jiachi
    Ma, Fei
    Peng, Shanglong
    SCIENCE CHINA-MATERIALS, 2020, 63 (04) : 516 - 523
  • [48] Improving the performance of colloidal quantum-dot-sensitized solar cells
    Gimenez, Sixto
    Mora-Sero, Ivan
    Macor, Lorena
    Guijarro, Nestor
    Lana-Villarreal, Teresa
    Gomez, Roberto
    Diguna, Lina J.
    Shen, Qing
    Toyoda, Taro
    Bisquert, Juan
    NANOTECHNOLOGY, 2009, 20 (29)
  • [49] Preparation of PbS quantum dots for quantum dot-sensitized solar cells
    Ge Mei-Ying
    Liu Yu-Feng
    Luo Hai-Han
    Huang Chan-Yan
    Sun Yan
    Dai Ning
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2013, 32 (05) : 385 - 388
  • [50] MnS passivation layer for highly efficient ZnO-based quantum dot-sensitized solar cells
    Luo, Jun
    Wang, Yan Xiang
    Sun, Jian
    Yang, Zhi Sheng
    Zhang, Qi Feng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 187 : 199 - 206