Single and Multi Diffusion-Tensor Based Kernels for Anisotropic Filtering of Brain DW-MR Images

被引:0
|
作者
Ramirez-Manzanares, Alonso [1 ]
Rafael-Patino, Jonathan [2 ]
机构
[1] Univ Guanajuato, Dept Matemat, Callejo Jalisco S-N, Guanajuato, Gto, Mexico
[2] Univ Guanajuato, Div CN & E, Guanajuato, Gto, Mexico
关键词
REGULARIZATION; PDES;
D O I
10.1109/CERMA.2010.113
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure of the fiber pathways of brain white matter. Though, the recovered axon orientations could be prone to error because of the low signal to noise ratio. Spatial regularization can improve the estimations but it must be done carefully such that real information is not removed and false orientations are not introduced. In this work we investigate the advantages to apply an anisotropic filtering based on single and multiple axon bundle orientation kernels. To this aim, we compute local diffusion kernels based on Diffusion Tensor and multi Diffusion Tensor models. We show the benefits of our approach on three different types of DW-MRI Data: synthetic, in vivo human data, and acquired from a diffusion phantom.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [21] Computation of the mid-sagittal plane in diffusion tensor MR brain images
    Prima, Sylvain
    Wiest-Daessle, Nicolas
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [22] Diffusion-tensor MR imaging of the human brain with gradient- and spin-echo readout: Technical note
    Itoh, R
    Melhem, ER
    Folkers, PJM
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2000, 21 (09) : 1591 - 1595
  • [23] Do radiomics or diffusion-tensor images provide additional information to predict brain amyloid-beta positivity?
    Jo, Sungyang
    Lee, Hyunna
    Kim, Hyung-Ji
    Suh, Chong Hyun
    Kim, Sang Joon
    Lee, Yoojin
    Roh, Jee Hoon
    Lee, Jae-Hong
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [24] Do radiomics or diffusion-tensor images provide additional information to predict brain amyloid-beta positivity?
    Sungyang Jo
    Hyunna Lee
    Hyung-Ji Kim
    Chong Hyun Suh
    Sang Joon Kim
    Yoojin Lee
    Jee Hoon Roh
    Jae-Hong Lee
    Scientific Reports, 13 (1)
  • [25] Acute irradiance consequences after prophylactic full-brain irradiation - MR screening by means of diffusion-tensor imaging
    Welzel, T.
    Mende, U.
    Debus, J.
    Krempien, R.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2006, 182 : 24 - 24
  • [26] Microstructural Brain Abnormalities in Patients with Obsessive-Compulsive Disorder: Diffusion-Tensor MR Imaging Study at 3.0 T
    Li, Fei
    Huang, Xiaoqi
    Yang, Yanchun
    Li, Bin
    Wu, Qizhu
    Zhang, Tijiang
    Lui, Su
    Kemp, Graham J.
    Gong, Qiyong
    RADIOLOGY, 2011, 260 (01) : 216 - 223
  • [27] Brain Tissues Anisotropic Conductivity Model Based on Diffusion Tensor Imaging
    Wu, Zhanxiong
    Li, Xun
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 29 - 31
  • [28] MULTI SCALE REPRESENTATION FOR REMOTELY SENSED IMAGES USING FAST ANISOTROPIC DIFFUSION FILTERING
    Vanhamel, I.
    Alrefaya, M.
    Sahli, H.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2222 - 2225
  • [29] CUDA-Based Acceleration of Collateral Filtering in Brain MR Images
    Li, Cheng-Yuan
    Chang, Herng-Hua
    EIGHTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2016), 2017, 10225
  • [30] Optimization of diffusion-tensor MR imaging data acquisition parameters for brain fiber tracking using parallel imaging at 3 T
    Shinji Naganawa
    Tokiko Koshikawa
    Hisashi Kawai
    Hiroshi Fukatsu
    Takeo Ishigaki
    Katsuya Maruyama
    Osamu Takizawa
    European Radiology, 2004, 14 : 234 - 238