n-Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage: A Critical Review

被引:150
|
作者
Peng, Hao [1 ]
Zhang, Dong [1 ]
Ling, Xiang [1 ]
Li, Yang [1 ]
Wang, Yan [1 ]
Yu, Qinghua [2 ,3 ]
She, Xiaohui [2 ]
Li, Yongliang [2 ]
Ding, Yulong [2 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Jiangsu Key Lab Proc Enhancement & New Energy Equ, 30 Pu Zhu South Rd, Nanjing 211816, Jiangsu, Peoples R China
[2] Univ Birmingham, Sch Chem Engn, Birmingham Ctr Energy Storage, Birmingham B15 2TT, W Midlands, England
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
CHANGE MATERIALS PCMS; RIGID POLYURETHANE FOAMS; CALCIUM-CARBONATE SHELL; CHANGE MATERIAL SLURRY; THERMOREGULATORY ENZYME CARRIERS; POLY(METHYL METHACRYLATE) SHELL; CHANGE MATERIALS MICROCAPSULES; HEXADECANE BINARY-MIXTURES; CONVECTIVE HEAT-TRANSFER; SOLID-LIQUID EQUILIBRIA;
D O I
10.1021/acs.energyfuels.8b01347
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
n-Alkanes and their blends are characterized as phase change materials (PCMs) due to their superior thermodynamic performances, for storing thermal energy in various practical applications (solar or wind energy). Such materials present some limitations, including lower thermal conductivity, supercooling, phase segregation, and volume expansion, among others. To address these problems, microencapsulation of n-alkanes and their blends is being successfully developed. A considerable amount of work has been published in this regard. Hence, the aim of this review is focused on two aspects: summarize the pure n-alkanes and their blends PCMs; describe their microencapsulation. PCM-interesting characteristics (transition temperatures and enthalpies) of pure n-alkanes, multinary alkanes, and paraffins (over 140 types) were listed, while the phase equilibrium evaluations of multinary alkanes were elaborated on. The essential information, core and shell materials, crystallization and melting characteristics, encapsulation/thermal storage efficiencies, thermal conductivities, and synthesis methods of microencapsulated n-alkanes and their blends, were listed (over 200 types). A brief introduction of the synthesis methods, such as physical, chemical, physical chemical, and self-assembly processes, were presented. The characterization of microcapsules such as thermal properties (phase change behaviors, thermal conductivity, and thermal stability), physical properties (microcapsules size distribution and morphologies, efficiencies, mechanical strength, and leakage), and chemical properties were discussed and analyzed. Finally, the practical applications of microencapsulated n-alkanes and their blends in the fields of slurry, buildings, textiles, and foam were reported.
引用
收藏
页码:7262 / 7293
页数:32
相关论文
共 50 条
  • [41] Review on thermal energy storage with phase change materials (PCMs) in building applications
    Zhou, D.
    Zhao, C. Y.
    Tian, Y.
    APPLIED ENERGY, 2012, 92 : 593 - 605
  • [42] A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications
    Sun, Mingyang
    Liu, Tong
    Sha, Haonan
    Li, Mulin
    Liu, Tianze
    Wang, Xinlei
    Chen, Guijun
    Wang, Jiadian
    Jiang, Dongyue
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [43] Review of thermal energy storage of micro- and nanoencapsulated phase change materials
    Karthikeyan, M.
    Ramachandran, T.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 (07) : 541 - 554
  • [44] Review on air and water thermal energy storage of buildings with phase change materials
    Yin Ma
    Yilin Luo
    Hongxiang Xu
    Ruiqing Du
    Yong Wang
    Experimental and Computational Multiphase Flow, 2021, 3 : 77 - 99
  • [45] Review on air and water thermal energy storage of buildings with phase change materials
    Ma, Yin
    Luo, Yilin
    Xu, Hongxiang
    Du, Ruiqing
    Wang, Yong
    EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2021, 3 (02) : 77 - 99
  • [46] Recent advances in phase change materials for thermal energy storage-a review
    Kavati Venkateswarlu
    Konijeti Ramakrishna
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [47] Morphological characterization and applications of phase change materials in thermal energy storage: A review
    Huang, Xiang
    Alva, Guruprasad
    Jia, Yuting
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 72 : 128 - 145
  • [48] A review on thermal energy storage with phase change materials enhanced by metal foams
    Buonomo, Bernardo
    Golia, Maria Rita
    Manca, Oronzio
    Nardini, Sergio
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 53
  • [49] Review on phase change materials (PCMs) for cold thermal energy storage applications
    Oro, E.
    de Gracia, A.
    Castell, A.
    Farid, M. M.
    Cabeza, L. F.
    APPLIED ENERGY, 2012, 99 : 513 - 533
  • [50] Microencapsulation of phase change material with poly (ethylacrylate) shell for thermal energy storage
    Konuklu, Yeliz
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (15) : 2019 - 2029