Altered motor performance in Alzheimer's disease: a dynamic analysis using EEG

被引:0
|
作者
Allouch, Sahar [1 ]
Tabbal, Judie [1 ,2 ]
Nasser, Assef [3 ]
Hassan, Mahmoud [2 ]
Khalil, Mohamad [1 ,4 ]
Kabbara, Aya [2 ]
机构
[1] Lebanese Univ, EDST, Azm Ctr Res Biotechnol & Its Applicat, Tripoli, Lebanon
[2] INSERM, U1099, LTSI, F-35000 Rennes, France
[3] Vita Nova Polyclin, Tripoli, Lebanon
[4] Lebanese Univ, Fac Engn, CRSI Res Ctr, Tripoli, Lebanon
关键词
Alzheimer' s disease; Electroencephalography; motor task; static analysis; dynamic analysis; BRAIN NETWORKS; MEG; SYNCHRONIZATION; CONNECTIVITY; ATROPHY;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory impairment and cognitive deficits. Many previous studies assumed stationarity of the brain activity while quantifying differences between AD patients and controls. However, the human brain is a dynamic system, and cognitive processes may change at sub-second timescale. The main objective of this study is to investigate the advantage of dynamic analysis over static analysis in detecting the brain alterations occurred in AD. Therefore, using electroencephalography data recorded from 10 AD patients and 12 healthy elderly controls while performing a motor task, we investigated the channel-level differences in voltage distribution between AD and controls with both, static and dynamic approaches. While static analysis showed similar response for both groups, dynamic analysis revealed significant differences in different brain regions during the first 200 ms following stimulus onset. These findings highlight the necessity of adopting a dynamic analysis when exploring brain activity differences between AD and controls.
引用
收藏
页码:176 / 179
页数:4
相关论文
共 50 条
  • [21] Mutual information analysis of the EEG in patients with Alzheimer's disease
    Jeong, J
    Gore, JC
    Peterson, BS
    CLINICAL NEUROPHYSIOLOGY, 2001, 112 (05) : 827 - 835
  • [22] Using Static and Dynamic Canonical Correlation Coefficients as Quantitative EEG Markers for Alzheimer's Disease Severity
    Waser, M.
    Garn, H.
    Deistler, M.
    Benke, T.
    Dal-Bianco, P.
    Ransmayr, G.
    Schmidt, H.
    Sanin, G.
    Santer, P.
    Caravias, G.
    Seiler, S.
    Grossegger, D.
    Fruehwirt, W.
    Schmidt, R.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 2801 - 2804
  • [23] The dopaminergic basis of cognitive and motor performance in Alzheimer's disease
    Reeves, Suzanne
    Mehta, Mitul
    Howard, Robert
    Grasby, Paul
    Brown, Richard
    NEUROBIOLOGY OF DISEASE, 2010, 37 (02) : 477 - 482
  • [24] EEG in the diagnostics of Alzheimer’s disease
    M. Waser
    M. Deistler
    H. Garn
    T. Benke
    P. Dal-Bianco
    G. Ransmayr
    D. Grossegger
    R. Schmidt
    Statistical Papers, 2013, 54 : 1095 - 1107
  • [25] EEG coherence in Alzheimer's disease
    Locatelli, T
    Cursi, M
    Liberati, D
    Franceschi, M
    Comi, G
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1998, 106 (03): : 229 - 237
  • [26] EEG in the diagnostics of Alzheimer's disease
    Waser, M.
    Deistler, M.
    Garn, H.
    Benke, T.
    Dal-Bianco, P.
    Ransmayr, G.
    Grossegger, D.
    Schmidt, R.
    STATISTICAL PAPERS, 2013, 54 (04) : 1095 - 1107
  • [27] Quantitative EEG in Alzheimer's disease
    Dierks, T
    Jelic, V
    Wahlund, LO
    Frölich, L
    Maurer, K
    Ihl, R
    NEUROBIOLOGY OF AGING, 2002, 23 (01) : S562 - S562
  • [28] Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease
    Yang, Albert C.
    Wang, Shuu-Jiun
    Lai, Kuan-Lin
    Tsai, Chia-Fen
    Yang, Cheng-Hung
    Hwang, Jen-Ping
    Lo, Men-Tzung
    Huang, Norden E.
    Peng, Chung-Kang
    Fuh, Jong-Ling
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2013, 47 : 52 - 61
  • [29] Altered neurogenesis in Alzheimer's disease
    Ziabreva, Iryna
    Perry, Elaine
    Perry, Robert
    Minger, Stephen L.
    Ekonomou, Antigoni
    Przyborski, Stefan
    Ballard, Clive
    JOURNAL OF PSYCHOSOMATIC RESEARCH, 2006, 61 (03) : 311 - 316
  • [30] Detection of Alzheimer's Disease from EEG Signals Using Explainable Artificial Intelligence Analysis
    Arabaci, Bahadir
    Ocal, Hakan
    Polat, Kemal
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,