Multimodal Multi-image Fake News Detection

被引:49
|
作者
Giachanou, Anastasia [1 ]
Zhang, Guobiao [1 ,2 ]
Rosso, Paolo [1 ]
机构
[1] Univ Politecn Valencia, Valencia, Spain
[2] Wuhan Univ, Wuhan, Peoples R China
基金
瑞士国家科学基金会;
关键词
multimodal fake news detection; multi-image system;
D O I
10.1109/DSAA49011.2020.00091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have seen a large increase in the amount of false information that is posted online. Fake news are created and propagated in order to deceive users and manipulate opinions and subsequently have a negative impact on the society. The automatic detection of fake news is very challenging since some of those news are created in sophisticated ways containing text or images that have been deliberately modified. Combining information from different modalities can be very useful for determining which of the online articles are fake. In this paper, we propose a multimodal multi-image system that combines information from different modalities in order to detect fake news posted online. In particular, our system combines textual, visual and semantic information. For the textual representation we use the Bidirectional Encoder Representations from Transformers (BERT) to better capture the underlying semantic and contextual meaning of the text. For the visual representation we extract image tags from multiple images that the articles contain using the VGG-16 model. The semantic representation refers to the text-image similarity calculated using the cosine similarity between the title and image tags embeddings. Our experimental results on a real world dataset show that combining features from the different modalities is effective for fake news detection. In particular, our multimodal multi-image system significantly outperforms the BERT baseline by 4.19% and SpotFake by 5.39%.
引用
收藏
页码:647 / 654
页数:8
相关论文
共 50 条
  • [21] Not all fake news is semantically similar: Contextual semantic representation learning for multimodal fake news detection
    Peng, Liwen
    Jian, Songlei
    Kan, Zhigang
    Qiao, Linbo
    Li, Dongsheng
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [22] Multimodal Fake News Detection Based on Multi-angle Fusion and Prediction Consistency Optimization
    Fu, Xian
    Zhang, Zhuzhu
    Wu, Tianrui
    Zhang, Ningning
    Zhang, Hui
    Sun, Yu
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 597 - 602
  • [23] Multimodal Fake News Detection with Contrastive Learning and Optimal Transport
    Shen, Xiaorong
    Huang, Maowei
    Hu, Zheng
    Cai, Shimin
    Zhou, Tao
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [24] Research on fake news detection based on CLIP multimodal mechanism
    Xu, Jinzhong
    Zhang, Yujie
    Liu, Weiguang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 72 - 79
  • [25] Multimodal Fake News Detection with Textual, Visual and Semantic Information
    Giachanou, Anastasia
    Zhang, Guobiao
    Rosso, Paolo
    TEXT, SPEECH, AND DIALOGUE (TSD 2020), 2020, 12284 : 30 - 38
  • [26] Inter-modality Discordance for Multimodal Fake News Detection
    Singhal, Shivangi
    Dhawan, Mudit
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    ACM International Conference Proceeding Series, 2021,
  • [27] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48
  • [28] Fake News Detection Based on the Correlation Extension of Multimodal Information
    Li, Yanqiang
    Ji, Ke
    Ma, Kun
    Chen, Zhenxiang
    Zhou, Jin
    Wu, Jun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 443 - 450
  • [29] Hierarchical Semantic Enhancement Network for Multimodal Fake News Detection
    Zhang, Qiang
    Liu, Jiawei
    Zhang, Fanrui
    Xie, Jingyi
    Zha, Zheng-Jun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3424 - 3433
  • [30] Reinforced Adaptive Knowledge Learning for Multimodal Fake News Detection
    Zhang, Litian
    Zhang, Xiaoming
    Zhou, Ziyi
    Huang, Feiran
    Li, Chaozhuo
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16777 - 16785