Multimodal Multi-image Fake News Detection

被引:49
|
作者
Giachanou, Anastasia [1 ]
Zhang, Guobiao [1 ,2 ]
Rosso, Paolo [1 ]
机构
[1] Univ Politecn Valencia, Valencia, Spain
[2] Wuhan Univ, Wuhan, Peoples R China
基金
瑞士国家科学基金会;
关键词
multimodal fake news detection; multi-image system;
D O I
10.1109/DSAA49011.2020.00091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have seen a large increase in the amount of false information that is posted online. Fake news are created and propagated in order to deceive users and manipulate opinions and subsequently have a negative impact on the society. The automatic detection of fake news is very challenging since some of those news are created in sophisticated ways containing text or images that have been deliberately modified. Combining information from different modalities can be very useful for determining which of the online articles are fake. In this paper, we propose a multimodal multi-image system that combines information from different modalities in order to detect fake news posted online. In particular, our system combines textual, visual and semantic information. For the textual representation we use the Bidirectional Encoder Representations from Transformers (BERT) to better capture the underlying semantic and contextual meaning of the text. For the visual representation we extract image tags from multiple images that the articles contain using the VGG-16 model. The semantic representation refers to the text-image similarity calculated using the cosine similarity between the title and image tags embeddings. Our experimental results on a real world dataset show that combining features from the different modalities is effective for fake news detection. In particular, our multimodal multi-image system significantly outperforms the BERT baseline by 4.19% and SpotFake by 5.39%.
引用
收藏
页码:647 / 654
页数:8
相关论文
共 50 条
  • [1] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    INFORMATION, 2022, 13 (06)
  • [2] HAN, image captioning, and forensics ensemble multimodal fake news detection
    Meel, Priyanka
    Vishwakarma, Dinesh Kumar
    INFORMATION SCIENCES, 2021, 567 : 23 - 41
  • [3] Text-image multimodal fusion model for enhanced fake news detection
    Lin, Szu-Yin
    Chen, Yen-Chiu
    Chang, Yu-Han
    Lo, Shih-Hsin
    Chao, Kuo-Ming
    SCIENCE PROGRESS, 2024, 107 (04)
  • [4] Fake News Detection Based on Multimodal Inputs
    Liang, Zhiping
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 4519 - 4534
  • [5] Multimodal Approaches based on Fake News Detection
    Reddy, Bandi Sravani
    Siva Kumar, A.P.
    Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, : 751 - 755
  • [6] Improving Generalization for Multimodal Fake News Detection
    Tahmasebi, Sahar
    Hakimov, Sherzod
    Ewerth, Ralph
    Mueller-Budack, Eric
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 581 - 585
  • [7] TRANSFAKE: Multi-task Transformer for Multimodal Enhanced Fake News Detection
    Jing, Quanliang
    Yao, Di
    Fan, Xinxin
    Wang, Baoli
    Tan, Haining
    Bu, Xiangpeng
    Bi, Jingping
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [8] Multi-image position detection
    Haist, Tobias
    Dong, Shihao
    Arnold, Thomas
    Gronle, Mark
    Osten, Wolfgang
    OPTICS EXPRESS, 2014, 22 (12): : 14450 - 14463
  • [9] LLM-Enhanced multimodal detection of fake news
    Wang, Jingwei
    Zhu, Ziyue
    Liu, Chunxiao
    Li, Rong
    Wu, Xin
    PLOS ONE, 2024, 19 (10):
  • [10] Dataset for multimodal fake news detection and verification tasks
    Bondielli, Alessandro
    Dell'Oglio, Pietro
    Lenci, Alessandro
    Marcelloni, Francesco
    Passaro, Lucia
    DATA IN BRIEF, 2024, 54