A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents

被引:76
|
作者
Linial, N [1 ]
Samorodnitsky, A
Wigderson, A
机构
[1] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, IL-91904 Jerusalem, Israel
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
D O I
10.1007/s004930070007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a deterministic strongly polynomial algorithm that computes the permanent of a, nonnegative nxn matrix to within a multiplicative factor of e(n). To this end we develop the first strongly polynomial-time algorithm for matrix scaling - an important nonlinear optimization problem with many applications. Our work suggests a simple new (slow) polynomial time decision algorithm for bipartite perfect matching, conceptually different from classical approaches.
引用
收藏
页码:545 / 568
页数:24
相关论文
共 50 条
  • [31] Approximate Counting of k-Paths: Simpler, Deterministic, and in Polynomial Space
    Lokshtanov, Daniel
    Bjorklund, Andreas
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2021, 17 (03)
  • [32] A deterministic algorithm for isolating real roots of a real polynomial
    Mehlhorn, Kurt
    Sagraloff, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) : 70 - 90
  • [33] A Parametric Polynomial Deterministic Algorithm for #2SAT
    Raymundo Marcial-Romero, J.
    De Ita Luna, Guillermo
    Antonio Hernandez, J.
    Maria Valdovinos, Rosa
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 202 - 213
  • [34] A Parallel Matrix Scaling Algorithm
    Amestoy, Patrick R.
    Duff, Iain S.
    Ruiz, Daniel
    Ucar, Bora
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2008, 2008, 5336 : 301 - +
  • [35] A scaling algorithm for polynomial constraint satisfaction problems
    Domes, Ferenc
    Neumaier, Arnold
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 42 (03) : 327 - 345
  • [36] A scaling algorithm for polynomial constraint satisfaction problems
    Ferenc Domes
    Arnold Neumaier
    Journal of Global Optimization, 2008, 42 : 327 - 345
  • [37] Efficient Deterministic Approximate Counting for Low-Degree Polynomial Threshold Functions
    De, Anindya
    Servedio, Rocco A.
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 832 - 841
  • [38] Scaling laws for strongly anharmonic vibrational matrix elements
    Child, MS
    Jacobson, MP
    Cooper, CD
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (48): : 10791 - 10799
  • [39] Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions
    De, Anindya
    Diakonikolas, Ilias
    Servedio, Rocco A.
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 229 - 240
  • [40] A strongly polynomial algorithm for line search in submodular polyhedra
    Nagano, Kiyollito
    DISCRETE OPTIMIZATION, 2007, 4 (3-4) : 349 - 359