Efficient resting-state EEG network facilitates motor imagery performance

被引:109
|
作者
Zhang, Rui [1 ]
Yao, Dezhong [1 ,2 ]
Valdes-Sosa, Pedro A. [1 ,3 ]
Li, Fali [1 ]
Li, Peiyang [1 ]
Zhang, Tao [1 ]
Ma, Teng [1 ]
Li, Yongjie [1 ,2 ]
Xu, Peng [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Minist Educ, Key Lab NeuroInformat, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Ctr Informat BioMed, Chengdu 610054, Peoples R China
[3] Cuban Neurosci Ctr, Havana, Cuba
关键词
MI-based brain-computer interface (MI-BCI); resting-state EEG network; graph theory; BCI inefficiency; BRAIN-COMPUTER-INTERFACE; FUNCTIONAL CONNECTIVITY; DEFAULT MODE; DESYNCHRONIZATION; SYNCHRONIZATION; COMMUNICATION; ASYMMETRY; INDEX; MEG;
D O I
10.1088/1741-2560/12/6/066024
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Motor imagery-based brain-computer interface (MI-BCI) systems hold promise in motor function rehabilitation. and assistance for motor function impaired people. But the ability to operate an MI-BCI varies across subjects, which becomes a substantial problem for practical BCI applications beyond the laboratory. Approach. Several previous studies have demonstrated that individual MI-BCI performance is related to the resting. state of brain. In this study, we further investigate. offline MI-BCI performance variations through the perspective of resting-state electroencephalography (EEG) network. Main results.. Spatial topologies and statistical measures of the network have close relationships with. MI classification accuracy. Specifically,. mean functional connectivity, node degrees, edge strengths, clustering coefficient, local efficiency. and global efficiency are positively correlated with MI classification accuracy, whereas the characteristic path length is negatively correlated with MI classification accuracy. The above results indicate that an efficient background EEG network may facilitate MI-BCI performance. Finally, a multiple linear regression model was adopted to predict subjects' MI classification accuracy based on the efficiency measures of the resting-state EEG network, resulting in a reliable prediction. Significance. This study reveals the network mechanisms of. the MI-BCI. and may help to find new strategies for improving MI-BCI performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Resting-State EEG Microstates in Psychotic Disorders
    de Bock, Renate
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S22 - S23
  • [22] A resting-state EEG dataset for sleep deprivation
    Xiang, Chuqin
    Fan, Xinrui
    Bai, Duo
    Lv, Ke
    Lei, Xu
    SCIENTIFIC DATA, 2024, 11 (01)
  • [23] Resting-State EEG Classification for PNES Diagnosis
    Zucco, Chiara
    Calabrese, Barbara
    Mancuso, Rossana
    Sturniolo, Miriam
    Gambardella, Antonio
    Cannataro, Mario
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 526 - 538
  • [24] The correlation between upper body grip strength and resting-state EEG network
    Zhang, Xiabing
    Lu, Bin
    Chen, Chunli
    Yang, Lei
    Chen, Wanjun
    Yao, Dezhong
    Hou, Jingming
    Qiu, Jing
    Li, Fali
    Xu, Peng
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (08) : 2139 - 2148
  • [25] The correlation between upper body grip strength and resting-state EEG network
    Xiabing Zhang
    Bin Lu
    Chunli Chen
    Lei Yang
    Wanjun Chen
    Dezhong Yao
    Jingming Hou
    Jing Qiu
    Fali Li
    Peng Xu
    Medical & Biological Engineering & Computing, 2023, 61 : 2139 - 2148
  • [26] Individual Identification Based on Resting-State EEG
    Choi, Ga-Young
    Choi, Soo-In
    Hwang, Han-Jeong
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 121 - 124
  • [27] Predicting individual muscle fatigue tolerance by resting-state EEG brain network *
    Li, Zhiwei
    Yi, Chanlin
    Chen, Chunli
    Liu, Chen
    Zhang, Shu
    Li, Shunchang
    Gao, Dongrui
    Cheng, Liang
    Zhang, Xiabing
    Sun, Junzhi
    He, Ying
    Xu, Peng
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (04)
  • [28] Discrimination of Tourette Syndrome Based on the Spatial Patterns of the Resting-State EEG Network
    Duan, Keyi
    Wu, Qian
    Liao, Yuanyuan
    Si, Yajing
    Bore, Joyce Chelangat
    Li, Fali
    Tao, Qin
    Lin, Li
    Lei, Wei
    Hu, Xudong
    Yao, Dezhong
    Pei, Changfu
    Zhang, Tao
    Huang, Lin
    Xu, Peng
    BRAIN TOPOGRAPHY, 2021, 34 (01) : 78 - 87
  • [29] BOLD correlates of EEG topography reveal rapid resting-state network dynamics
    Britz, Juliane
    Van De Ville, Dimitri
    Michel, Christoph M.
    NEUROIMAGE, 2010, 52 (04) : 1162 - 1170
  • [30] Emdr Therapy Changes the Resting-state Eeg
    Di Lorenzo, G.
    Monaco, L.
    Daverio, A.
    Santarnecchi, E.
    Verrdo, A. R.
    Niolu, C.
    Fernandez, I.
    Pagani, M.
    Siracusano, A.
    EUROPEAN PSYCHIATRY, 2015, 30