Detecting SNP-SNP Interactions in Imbalanced Case-Control Study

被引:3
|
作者
Yang, Cheng-Hong [1 ,2 ]
Chuang, Li-Yeh [3 ]
Lin, Yu-Da [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
[2] Kaohsiung Med Univ, PhD Program Biomed Engn, Kaohsiung 807, Taiwan
[3] I Shou Univ, Inst Biotechnol & Chem Engn, Dept Chem Engn, Kaohsiung 807, Taiwan
关键词
SNP-SNP interactions; multiobjective approach multifactor dimensionality reduction; imbalanced case-control study; MULTIFACTOR-DIMENSIONALITY REDUCTION; 7 COMMON DISEASES; GENE-GENE; EPISTATIC INTERACTION;
D O I
10.1109/ACCESS.2019.2943614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
SNP-SNP interactions are particularly informative biomarkers regarding the genetic components of disease risk. However, SNP-SNP interaction identifications are yet limited in imbalanced case-control study. In this study, we proposed a multiobjective multifactor dimensionality reduction (MOMDR) based on three balancing approaches (BMOMDR), including (1) stratified K-fold cross-validation; (2) balanced estimation of ratio between cases and controls; (3) balanced measures of SNP-SNP interactions, to effectively identify SNP-SNP interaction in imbalanced case-control study. BMOMDR was evaluated by extensive experiments on both simulated imbalanced case-control datasets and real genome-wide data from Wellcome Trust Case Control Consortium (WTCCC). For the simulated datasets, the results indicated that three balancing approaches can enhance the detection success rate of SNP-SNP interaction by MOMDR in imbalanced datasets. For WTCCC datasets, the results of SNP-SNP interaction detection obtained from BMOMDR revealed statistically significant (p<0.0001), revealing that BMOMDR can effectively identify SNP-SNP interaction in imbalanced case-control study. BMOMDR is freely available at http://shorturl.at/bluJS.
引用
收藏
页码:143036 / 143045
页数:10
相关论文
共 50 条
  • [21] INTERGENE SNP-SNP INTERACTIONS IN DDR1 AND SUSCEPTIBILITY TO SCHIZOPHRENIA
    Abasolo, Nerea
    Martorell, Lourdes
    Sanjuan, Julio
    Costas, Javier
    Marsal, Sara
    Julia, Antonio
    Guitart Feliubadalo, Miriam
    Pomarol-Clotet, Edith
    Gaviria, Ana M.
    Vilella, Elisabet
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 : S340 - S341
  • [22] Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer
    Lin, Hui-Yi
    Wang, Wenquan
    Liu, Yung-Hsin
    Soong, Seng-Jaw
    York, Timothy P.
    Myers, Leann
    Hu, Jennifer J.
    JOURNAL OF HUMAN GENETICS, 2008, 53 (09) : 802 - 811
  • [23] An Improved Ant Colony Optimization Algorithm for the Detection of SNP-SNP Interactions
    Sun, Yingxia
    Shang, Junliang
    Liu, JinXing
    Li, Shengjun
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2016, PT III, 2016, 9773 : 21 - 32
  • [24] Assessment of SNP-SNP interactions by using square contingency table analysis
    Karadag, Ozge
    Altun, Gokcen
    Aktas, Serpil
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2020, 92 (03): : 1 - 10
  • [25] Exploring Genetic Interactions in Colombian Women with Polycystic Ovarian Syndrome: A Study on SNP-SNP Associations
    Alarcon-Granados, Maria Camila
    Camargo-Villalba, Gloria Eugenia
    Forero-Castro, Maribel
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [26] DETECTION OF THE SNP-SNP INTERACTIONS IN THE JUVENILE ARTHRITIS SUSCEPTIBILITY USING MDR ANALYSIS
    Yatskiu, Hanna
    Savina, Nataliya
    Nikitchenko, Nataliya
    Kuzhir, Tatyana
    Sukalo, Alexandr
    Goncharova, Roza
    ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 : 1469 - 1469
  • [27] Analysis of SNP-SNP interactions and bone quantitative ultrasound parameter in early adulthood
    Correa-Rodriguez, Maria
    Viatte, Sebastien
    Massey, Jonathan
    Schmidt-RioValle, Jacqueline
    Rueda-Medina, Blanca
    Orozco, Gisela
    BMC MEDICAL GENETICS, 2017, 18
  • [28] EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits
    Arkin, Ya'ara
    Rahmani, Elior
    Kleber, Marcus E.
    Laaksonen, Reijo
    Maerz, Winfried
    Halperin, Eran
    BIOINFORMATICS, 2014, 30 (12) : 19 - 25
  • [29] Associative study of maternal genetic variations with preeclampsia in Russian population: SNP-SNP interactions and haplotypes association
    Bordaeva, Oksana Yurievna
    Derevyanchuk, Ekaterina Grigorievna
    Alset, Dema
    Amelina, Maria Aleksandrovna
    Shkurat, Tatiana Pavlovna
    GENE REPORTS, 2024, 36
  • [30] KLK3 SNP-SNP interactions for prediction of prostate cancer aggressiveness
    Lin, Hui-Yi
    Huang, Po-Yu
    Cheng, Chia-Ho
    Tung, Heng-Yuan
    Fang, Zhide
    Berglund, Anders E.
    Chen, Ann
    French-Kwawu, Jennifer
    Harris, Darian
    Pow-Sang, Julio
    Yamoah, Kosj
    Cleveland, John L.
    Awasthi, Shivanshu
    Rounbehler, Robert J.
    Gerke, Travis
    Dhillon, Jasreman
    Eeles, Rosalind
    Kote-Jarai, Zsofia
    Muir, Kenneth
    Schleutker, Johanna
    Pashayan, Nora
    Neal, David E.
    Nielsen, Sune F.
    Nordestgaard, Borge G.
    Gronberg, Henrik
    Wiklund, Fredrik
    Giles, Graham G.
    Haiman, Christopher A.
    Travis, Ruth C.
    Stanford, Janet L.
    Kibel, Adam S.
    Cybulski, Cezary
    Khaw, Kay-Tee
    Maier, Christiane
    Thibodeau, Stephen N.
    Teixeira, Manuel R.
    Cannon-Albright, Lisa
    Brenner, Hermann
    Kaneva, Radka
    Pandha, Hardev
    Srinivasan, Srilakshmi
    Clements, Judith
    Batra, Jyotsna
    Park, Jong Y.
    SCIENTIFIC REPORTS, 2021, 11 (01)