Detecting SNP-SNP Interactions in Imbalanced Case-Control Study

被引:3
|
作者
Yang, Cheng-Hong [1 ,2 ]
Chuang, Li-Yeh [3 ]
Lin, Yu-Da [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung 807, Taiwan
[2] Kaohsiung Med Univ, PhD Program Biomed Engn, Kaohsiung 807, Taiwan
[3] I Shou Univ, Inst Biotechnol & Chem Engn, Dept Chem Engn, Kaohsiung 807, Taiwan
关键词
SNP-SNP interactions; multiobjective approach multifactor dimensionality reduction; imbalanced case-control study; MULTIFACTOR-DIMENSIONALITY REDUCTION; 7 COMMON DISEASES; GENE-GENE; EPISTATIC INTERACTION;
D O I
10.1109/ACCESS.2019.2943614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
SNP-SNP interactions are particularly informative biomarkers regarding the genetic components of disease risk. However, SNP-SNP interaction identifications are yet limited in imbalanced case-control study. In this study, we proposed a multiobjective multifactor dimensionality reduction (MOMDR) based on three balancing approaches (BMOMDR), including (1) stratified K-fold cross-validation; (2) balanced estimation of ratio between cases and controls; (3) balanced measures of SNP-SNP interactions, to effectively identify SNP-SNP interaction in imbalanced case-control study. BMOMDR was evaluated by extensive experiments on both simulated imbalanced case-control datasets and real genome-wide data from Wellcome Trust Case Control Consortium (WTCCC). For the simulated datasets, the results indicated that three balancing approaches can enhance the detection success rate of SNP-SNP interaction by MOMDR in imbalanced datasets. For WTCCC datasets, the results of SNP-SNP interaction detection obtained from BMOMDR revealed statistically significant (p<0.0001), revealing that BMOMDR can effectively identify SNP-SNP interaction in imbalanced case-control study. BMOMDR is freely available at http://shorturl.at/bluJS.
引用
收藏
页码:143036 / 143045
页数:10
相关论文
共 50 条
  • [1] A Case-Control Study of Non-parametric Approaches for Detecting SNP-SNP Interactions
    Barbosa de Araujo, Flavia Roberta
    Gusmao, Eduardo Gade
    Guimaraes, Katia Silva
    2011 30TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2012, : 19 - 27
  • [2] Detecting SNP-SNP interactions in trios with affected probands
    Li, Qing
    Louis, Thomas A.
    Fallin, M. Danielle
    Ruczinski, Ingo
    GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 703 - 703
  • [3] A Novel Test for Detecting SNP-SNP Interactions in Case-Only Trio Studies
    Balliu, Brunilda
    Zaitlen, Noah
    GENETICS, 2016, 202 (04) : 1289 - +
  • [4] Detection of SNP-SNP Interactions in Case-Parent Trios
    Ruczinski, Ingo
    Li, Qing
    Louis, Thomas A.
    Fallin, Daniele
    Pulver, Ann E.
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 769 - 769
  • [5] Multiple testing for SNP-SNP interactions
    Boulesteix, Anne-Laure
    Strobl, Carolin
    Weidinger, Stefan
    Wichmann, H-Erich
    Wagenpfeil, Stefan
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2007, 6
  • [6] SNP-SNP interactions in breast cancer susceptibility
    Venüs Ümmiye Onay
    Laurent Briollais
    Julia A Knight
    Ellen Shi
    Yuanyuan Wang
    Sean Wells
    Hong Li
    Isaac Rajendram
    Irene L Andrulis
    Hilmi Ozcelik
    BMC Cancer, 6
  • [7] SNPsyn: detection and exploration of SNP-SNP interactions
    Curk, Tomaz
    Rot, Gregor
    Zupan, Blaz
    NUCLEIC ACIDS RESEARCH, 2011, 39 : W444 - W449
  • [8] SNP-SNP interactions in breast cancer susceptibility
    Onay, Venus Ummiye
    Briollais, Laurent
    Knight, Julia A.
    Shi, Ellen
    Wang, Yuanyuan
    Wells, Sean
    Li, Hong
    Rajendram, Isaac
    Andrulis, Irene L.
    Ozcelik, Hilmi
    BMC CANCER, 2006, 6 (1)
  • [9] Variable selection in logistic regression for detecting SNP-SNP interactions: the rheumatoid arthritis example
    Lin, Hui-Yi
    Desmond, Renee
    Bridges, S. Louis, Jr.
    Soong, Seng-jaw
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2008, 16 (06) : 735 - 741
  • [10] An associative classification based approach for detecting SNP-SNP interactions in high dimensional genome
    Uppu, Suneetha
    Krishna, Aneesh
    Gopalan, Raj P.
    2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2014, : 329 - 333