Low-temperature one-step solid-phase synthesis of carbon-encapsulated TiO2 nanocrystals as anode materials for lithium-ion batteries

被引:3
|
作者
Liu, Boyang [1 ]
Shao, Yingfeng [2 ]
Xiang, Xin [1 ]
Ren, Jiayuan [1 ]
Li, Wenge [3 ]
机构
[1] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Shanghai 201306, Peoples R China
[2] Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[3] Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Solid-phase synthesis; Core-shell structure; TiO2; nanocrystals; Lithium-ion battery; SENSITIZED SOLAR-CELLS; HIGH-PERFORMANCE ANODE; ELECTROPHILIC OXIDATION; ANATASE TIO2; NANOTUBE; STORAGE; NANOCOMPOSITE; GRAPHENE; CAPABILITY; NANOFIBERS;
D O I
10.1007/s11581-017-2053-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple and highly efficient method is developed for in situ one-step preparation of carbon co-encapsulated anatase and rutile TiO2 nanocrystals (TiO2@C) with core-shell structure for lithium-ion battery anode. The synthesis is depending on the solid-phase reaction of titanocene dichloride with ammonium persulfate in an autoclave at 200 degrees C for 30 min. The other three titanocene complexes including bis(cyclopentadienyl)dicarbonyl titanium, cyclopentadienyltitanium trichloride, and cyclopentadienyl(cycloheptatrienyl)titanium are used instead to comprehensively investigate the formation mechanism and to improve the microstructure of the product. The huge heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the TiO2 nanocrystals, resulting in the formation of core-shell structure. The TiO2 nanocrystals prepared by titanocene dichloride have an equiaxed morphology with a small diameter of 10-55 nm and the median size is 30.3 nm. Hundreds of TiO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 20-30 nm in thickness. The content of TiO2 nanocrystals in the nanocomposite is about 31.1 wt.%. This TiO2@C anode shows stable cyclability and retains a good reversible capacity of 400 mAh g(-1) after 100 cycles at a current density of about 100 mA g(-1), owing to the enhanced conductivity and protection of carbon shell.
引用
收藏
页码:2013 / 2024
页数:12
相关论文
共 50 条
  • [41] Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects
    Wang, Guan
    Wang, Guixin
    Fei, Linfeng
    Zhao, Lina
    Zhang, Haitao
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [42] Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms, Strategies, and Prospects
    Guan Wang
    Guixin Wang
    Linfeng Fei
    Lina Zhao
    Haitao Zhang
    Nano-Micro Letters, 2024, (08) : 175 - 201
  • [43] Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability
    Huang, Bin
    Li, Xinhai
    Pei, Yi
    Li, Shuang
    Cao, Xi
    Masse, Robert C.
    Cao, Guozhong
    SMALL, 2016, 12 (14) : 1945 - 1955
  • [44] Graphene-encapsulated Cu/TiO2 nanotubes anode materials for lithium/sodium ion batteries
    Wang, Qiufen
    Zhang, Chengli
    Miao, Juan
    Zhang, Yanlei
    Zhao, Caiyun
    Zhang, Zhilin
    Wen, Tao
    Shen, Nan
    MATERIALS LETTERS, 2019, 240 : 267 - 270
  • [45] In situ synthesis of carbon incorporated TiO2 with long-term performance as anode for lithium-ion batteries
    Chen, Yang
    Ma, Xiaoqing
    Cui, Xiaoli
    Jiang, Zhiyu
    JOURNAL OF POWER SOURCES, 2016, 302 : 233 - 239
  • [46] Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries
    Sun, Antao
    Zhong, Hui
    Zhou, Xiangyang
    Tang, Jingjing
    Jia, Ming
    Cheng, Fangyan
    Wang, Qian
    Yang, Juan
    APPLIED SURFACE SCIENCE, 2019, 470 : 454 - 461
  • [47] A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries
    Prakash, Raju
    Fanselau, Katharina
    Ren, Shuhua
    Mandal, Tapan Kumar
    Kuebel, Christian
    Hahn, Horst
    Fichtner, Maximilian
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2013, 4 : 699 - 704
  • [48] Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method
    Ding, Yan-Huai
    Zhang, Ping
    Ren, Hu-Ming
    Zhuo, Qin
    Yang, Zhong-Mei
    Jiang, Yong
    MATERIALS RESEARCH BULLETIN, 2011, 46 (12) : 2403 - 2407
  • [49] Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries
    Lai, C.
    Li, G. R.
    Dou, Y. Y.
    Gao, X. P.
    ELECTROCHIMICA ACTA, 2010, 55 (15) : 4567 - 4572
  • [50] Carbon-Coated Mesoporous TiO2 Nanocrystals Grown on Graphene for Lithium-Ion Batteries
    Zhang, Zehui
    Zhang, Ludan
    Li, Wei
    Yu, Aishui
    Wu, Peiyi
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (19) : 10395 - 10400