GEVREY REGULARITY AND EXISTENCE OF NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV SPACES

被引:6
|
作者
Yang, Minghua [1 ]
Sun, Jinyi [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Nernst-Planck-Poisson system; Navier-Stokes system; Gevrey regularity; global solutions; Besov spaces; FRACTIONAL SOBOLEV SPACE; WELL-POSEDNESS; HOMOTHETIC VARIANT; GLOBAL-SOLUTIONS; EQUATIONS; FLUID;
D O I
10.3934/cpaa.2017078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the Cauchy problem of Navier-Stokes-NernstPlanck-Poisson system (NSNPP). First of all, based on so-called Gevrey regularity estimates, which is motivated by the works of Foias and Temam [J. Funct. Anal., 87 (1989), 359-369], we prove that the solutions are analytic in a Gevrey class of functions. As a consequence of Gevrey estimates, we particularly obtain higher-order derivatives of solutions in Besov and Lebesgue spaces. Finally, we prove that there exists a positive constant C such that if the initial data (u(0), n(0), c(0)) = (u(0)(h), u(0)(3), n0, c0) satisfies parallel to(n(0),c(0),u(0)(h))parallel to (B) over dot(q,1)(-2+3/q) x (B) over dot(q,1)(-2+3/q) x (B) over dot(p,1)(-1+3/p) + parallel to u(0)(h)parallel to(alpha)(-1+3/p)((B) over dotp,1) parallel to u(0)(3)parallel to(1-alpha)(-1+3/p)((B) over dotp,1) <= 1/C for p, q, alpha with 1 < p < q <= 2p < infinity, 1/p + 1/q > 1/3, 1 < q < 6, 1/p - 1/q <= 1/3, then global existence of solutions with large initial vertical velocity component is established.
引用
收藏
页码:1617 / 1639
页数:23
相关论文
共 50 条
  • [41] Stability of the nonconstant stationary solution to the Poisson-Nernst-Planck-Navier-Stokes equations
    Shen, Rong
    Wang, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [42] GEVREY REGULARITY AND ANALYTICITY FOR THE SOLUTIONS OF THE VLASOV--NAVIER--STOKES SYSTEM
    Dechicha, Dahmane
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) : 7903 - 7939
  • [43] Global Smooth Solution for Navier-Stokes/Poisson-Nernst-Planck System in R2
    Wang, Jinhuan
    Wang, Weike
    Wang, Yucheng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (02)
  • [44] GEVREY REGULARITY FOR A SYSTEM COUPLING THE NAVIER-STOKES SYSTEM WITH A BEAM EQUATION
    Badra, Mehdi
    Takahashi, Takeo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4776 - 4814
  • [45] Existence and stability of nonequilibrium steady states of Nernst-Planck-Navier-Stokes systems
    Constantin, Peter
    Ignatova, Mihaela
    Lee, Fizay-Noah
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 442
  • [46] Error estimates for the finite element method of the Navier-Stokes-Poisson-Nernst-Planck equations
    Li, Minghao
    Li, Zhenzhen
    APPLIED NUMERICAL MATHEMATICS, 2024, 197 : 186 - 209
  • [47] Analyticity and Decay Estimates of the Navier–Stokes Equations in Critical Besov Spaces
    Hantaek Bae
    Animikh Biswas
    Eitan Tadmor
    Archive for Rational Mechanics and Analysis, 2012, 205 : 963 - 991
  • [48] Global existence and Gevrey analyticity of the Debye-Huckel system in critical Besov-Morrey spaces
    El Idrissi, Ahmed
    Srhiri, Halima
    El Boukari, Brahim
    El Ghordaf, Jalila
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [49] GLOBAL AXISYMMETRIC SOLUTIONS TO THE 3D NAVIER-STOKES-POISSON-NERNST-PLANCK SYSTEM IN THE EXTERIOR OF A CYLINDER
    Zhao, Jihong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (03) : 729 - 744
  • [50] Global existence and Gevrey analyticity of the Debye-Huckel system in critical Besov-Morrey spaces
    El Idrissi, Ahmed
    Srhiri, Halima
    El Boukari, Brahim
    El Ghordaf, Jalila
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 1600, 0 (01): : 2345-2641 - 2008-1081