Random patterns generated by random permutations of natural numbers

被引:2
|
作者
Oshanin, G.
Voituriez, R.
Nechaev, S.
Vasilyev, O.
Hivert, F.
机构
[1] Univ Paris 06, UMR 7600, F-75252 Paris, France
[2] Max Planck Inst Met Res, Dept Inhomogeneous Condensed Matter Theory, D-0569 Stuttgart, Germany
[3] Univ Paris 11, LPTMS, F-91405 Orsay, France
[4] Univ Rouen, LIFAR, LITIS, F-76801 St Etienne, France
来源
关键词
Random Walk; European Physical Journal Special Topic; Time Moment; Random Permutation; Local Height;
D O I
10.1140/epjst/e2007-00082-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We survey recent results on some one- and two-dimensional patterns generated by random permutations of natural numbers. In the first part, we discuss properties of random walks, evolving on a one-dimensional regular lattice in discrete time n, whose moves to the right or to the left are prescribed by the rise-and-descent sequence associated with a given random permutation. We determine exactly the probability of finding the trajectory of such a permutation-generated random walk at site X at time n, obtain the probability measure of different excursions and define the asymptotic distribution of the number of "U-turns" of the trajectories - permutation "peaks" and "through". In the second part, we focus on some statistical properties of surfaces obtained by randomly placing natural numbers 1, 2, 3,..., L on sites of a Id or 2d lattices containing L sites. We calculate the distribution function of the number of local "peaks" - sites the number at which is larger than the numbers appearing at nearest-neighboring sites and discuss surprising collective behavior emerging in this model.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [1] Random patterns generated by random permutations of natural numbers
    G. Oshanin
    R. Voituriez
    S. Nechaev
    O. Vasilyev
    F. Hivert
    The European Physical Journal Special Topics, 2007, 143 : 143 - 157
  • [2] Patterns in Random Permutations
    Chaim Even-Zohar
    Combinatorica, 2020, 40 : 775 - 804
  • [3] PATTERNS IN RANDOM PERMUTATIONS
    Even-Zohar, Chaim
    COMBINATORICA, 2020, 40 (06) : 775 - 804
  • [4] PATTERNS OF RELATIVE MAXIMA IN RANDOM PERMUTATIONS
    BRUSS, FT
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1984, 98 (01): : 19 - 28
  • [5] How random are random numbers generated using photons?
    Solis, Aldo
    Angulo Martinez, Ali M.
    Ramirez Alarcon, Roberto
    Cruz Ramirez, Hector
    U'Ren, Alfred B.
    Hirsch, Jorge G.
    PHYSICA SCRIPTA, 2015, 90 (07)
  • [6] Arcsine laws for random walks generated from random permutations with applications to genomics
    Fang, Xiao
    Gan, Han L.
    Holmes, Susan
    Huang, Haiyan
    Pekoz, Erol
    Rollin, Adrian
    Tang, Wenpin
    JOURNAL OF APPLIED PROBABILITY, 2021, 58 (04) : 851 - 867
  • [7] Law of large numbers for increasing subsequences of random permutations
    Pinsky, Ross G.
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (03) : 277 - 295
  • [8] Patterns in Random Permutations Avoiding the Pattern 132
    Janson, Svante
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (01): : 24 - 51
  • [9] Patterns in random permutations avoiding the pattern 321
    Janson, Svante
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (02) : 249 - 270
  • [10] RANDOM NUMBERS GENERATED BY A PHYSICAL DEVICE
    INOUE, H
    KUMAHORA, H
    YOSHIZAWA, Y
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1983, 32 (02) : 115 - 120