Strict Embeddings of Rearrangement Invariant Spaces

被引:1
|
作者
Astashkin, S. V. [1 ]
Semenov, E. M. [2 ]
机构
[1] Samara Univ, Samara 443086, Russia
[2] Voronezh State Univ, Voronezh 394006, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562418050095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Banach space E of measurable functions on [0,1] is called rearrangement invariant if E is a Banach lattice and equimeasurable functions have identical norms. The canonical inclusion E subset of F of two rearrangement invariant spaces is said to be strict if functions from the unit ball of E have absolutely equicontinuous norms in E Necessary and sufficient conditions for the strictness of canonical inclusion for Orlicz, Lorentz, and Marcinkiewicz spaces are obtained, and the relations of this concept to the disjoint strict singularity are studied.
引用
收藏
页码:327 / 329
页数:3
相关论文
共 50 条
  • [31] Factorization property in rearrangement invariant spaces
    Navoyan K.V.
    Advances in Operator Theory, 2023, 8 (4)
  • [32] Embedding property on rearrangement invariant spaces
    Li Hong-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 371 - 378
  • [33] Subspaces of rearrangement-invariant spaces
    Hernandez, FL
    Kalton, NJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (04): : 794 - 833
  • [34] ISOMETRIES ON REARRANGEMENT-INVARIANT SPACES
    KALTON, NJ
    RANDRIANANTOANINA, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (04): : 351 - 355
  • [35] The Jung constant in rearrangement invariant spaces
    Franchetti, C
    Semenov, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (07): : 723 - 728
  • [36] RUC systems in rearrangement invariant spaces
    Dodds, PG
    Semenov, EM
    Sukochev, FA
    STUDIA MATHEMATICA, 2002, 151 (02) : 161 - 173
  • [37] REARRANGEMENT INVARIANT SPACES WITH KATO PROPERTY
    Hernandez, Francisco L.
    Semenov, Evgueni M.
    Tradacete, Pedro
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 50 (02) : 215 - 232
  • [38] THE DAUGAVET PROPERTY IN REARRANGEMENT INVARIANT SPACES
    Acosta, M. D.
    Kaminska, A.
    Mastylo, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4061 - 4078
  • [39] The laplace transform on the rearrangement invariant spaces
    Erlin Castillo, Rene
    Miranda, B.
    Ramos-Fernandez, Julio C.
    QUAESTIONES MATHEMATICAE, 2022, 45 (12) : 1855 - 1875
  • [40] Strict ?-embeddings
    Reid, Lyall
    Richardson, Gary
    QUAESTIONES MATHEMATICAE, 2020, 43 (07) : 903 - 917