Ellagitannins are esters of glucose with hexahydroxydiphenic acid; when hydrolyzed, they yield ellagic acid (EA), the dilactone of hexahydroxydiphenic acid. EA has been receiving the most attention, because it has potent antioxidant activity, radical scavenging capacity, chemopreventive and antiapoptotic properties. Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of liver, and accounts for as many as one million deaths worldwide in a year. The aim of the present study was to evaluate the antioxidant and chemopreventive efficiency of ellagic acid against N-nitrosodiethylamine (NDEA) induced hepatocarcinogenesis in rats. Rats were classified into four groups as follows: normal control group, group injected i.p. with a single dose (200 mg/kg b.wt.) of NDEA, third group daily administered orally EA with a dose of 50 mg/kg b.wt. for 7 days before and 14 days after NDEA administration, and fourth group received a similar dose of EA for 21 days after the dose of NDEA administration. The model of NDEA-injected hepatocellular carcinomic (HCC) rats elicited significant declines in liver antioxidant enzyme activities; glutathione peroxidase (GPX), gamma glutamyl transferase (gamma-GT) and glutathione-S-transferase (GST), with a reduction in reduced glutathione (GSH) and serum total protein with concomitant significant elevations in tumor markers arginase and alpha-L-fucosidase, and liver enzymes; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PD), direct and total bilirubin. The oral administration of EA as a protective agent, produced significant increases in tested antioxidant enzyme activities and serum total protein concomitant with significant decreases in the levels of tumor markers arginase and alpha-L-fucosidase as well as liver enzymes, direct and total bilirubin. Similarly, the oral administration of EA, as a curative agent produced similar changes to those when EA was used as a protective agent, but to a lesser extent. In addition, it was noted that HCC rats exhibited a degree of DNA fragmentation; however, EA administration partially inhibited the DNA fragmentation. Therefore, EA has the ability to scavenge free radicals, prevent DNA fragmentation, reduce liver injury and protect against oxidative stress. (C) 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.