Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine

被引:20
|
作者
Salunkhe, Vishal G. [1 ]
Desavale, R. G. [2 ]
Jagadeesha, T. [3 ]
机构
[1] Shivaji Univ, Dept Mech Engn, Rajarambapu Inst Technol, Kolhapur 415414, Maharashtra, India
[2] Shivaji Univ, Dept Mech Engn, Rajarambapu Inst Technol, Design Engn Sect, Kolhapur 415414, Maharashtra, India
[3] Natl Inst Technol Calicut, Dept Mech Engn, Kozhikode 673601, Kerala, India
关键词
bearing; dimension analysis; support vector machine; condition monitoring; DYNAMIC-MODEL; BALL-BEARING; DISTRIBUTED DEFECTS; SYSTEM; PREDICTION; SINGLE;
D O I
10.1115/1.4048770
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In heavy rotating machines and assembly lines, bearing failure in any one of them may result in shut down and affects the overall cost and quality of the product. Condition monitoring of bearing systems avoids breakdown and saves time and cost of preventive and corrective maintenance. This research paper proposes advanced fault detection strategies for taper rolling bearings. In this, a mathematical model using dimension analysis by matrix method (DAMM) and support vector machine (SVM) is developed to predict the vibration characteristic of the rotor-bearing system. Various types of defects created using an electric discharge machine (EDM) are analyzed by correlating dependent and independent parameters. Experiments were performed to classify the rotor dynamic characteristic of the bearings and validated the models developed using DAMM and SVM. Results showed the potential of DA and SVM to predict the dynamic response and contribute to the service life extension, efficiency improvement, and reduce failure of bearings. Thus, the automatic online diagnosis of bearing faults is possible with a developed model-based by DAMM and SVM.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fault Diagnosis of Roller Bearing Using Parameter Evaluation Technique and Multi-Class Support Vector Machine
    Susilo, Didik Djoko
    Widodo, Achmad
    Prahasto, Toni
    Nizam, Muhammad
    INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE AND NANOTECHNOLOGY 2016 (ICESNANO 2016), 2017, 1788
  • [42] Multi-fault diagnosis for rolling element bearings based on intrinsic mode function screening and optimized least squares support vector machine
    Tong, Qingbin
    Han, Baozhu
    Lin, Yuyi
    Zhang, Weidong
    JOURNAL OF VIBROENGINEERING, 2016, 18 (07) : 4430 - 4448
  • [43] Vibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machine
    Kankar, Pavan Kumar
    Sharma, Satish C.
    Harsha, Suraj Prakash
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2012, 15 (03) : 185 - 198
  • [44] Fault frequency band segmentation and domain adaptation with fault simulated signal for fault diagnosis of rolling element bearings
    Park, Jongmin
    Yoo, Jinoh
    Kim, Taehyung
    Kim, Minjung
    Park, Jonghyuk
    Ha, Jong Moon
    Youn, Byeng D.
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2025, 12 (01) : 34 - 52
  • [45] Analog circuits fault diagnosis using support vector machine
    Sun, Yongkui
    Chen, Guangju
    Li, Hui
    2007 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS; VOL 2: SIGNAL PROCESSING, COMPUTATIONAL INTELLIGENCE, CIRCUITS AND SYSTEMS, 2007, : 1003 - +
  • [46] Analog circuits fault diagnosis based on support vector machine
    Sun Yongkui
    Chen Guangju
    Li Hui
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 630 - +
  • [47] Fault Diagnosis for HVDC Converter Based on Support Vector Machine
    Chen TangXian
    Li ShuangJie
    Tuo Zhuxiong
    Xu GuangLin
    Chen WenTao
    Lv Xiangxin
    Zhu Zhanchun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 6216 - 6220
  • [48] Research on Fault Diagnosis of PCCP Based on Support Vector Machine
    Yang, Chunting
    Liu, Yang
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 409 - 414
  • [49] Railway Turnout Fault Diagnosis Based on Support Vector Machine
    He, Youmin
    Zhao, Huibing
    Tian, Jian
    Zhang, Mengqi
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 2663 - 2667
  • [50] Fault diagnosis based on Walsh transform and support vector machine
    Xiang, Xiuqiao
    Zhou, Jianzhong
    An, Xueli
    Peng, Bing
    Yang, Junjie
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (07) : 1685 - 1693