A design and analysis of circulant preconditioners

被引:0
|
作者
Baik, R [1 ]
Baik, SW
机构
[1] Honam Univ, Dept Comp Engn, Kwangju 506090, South Korea
[2] Sejong Univ, Coll Elect & Informat Engn, Seoul 143747, South Korea
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new type of preconditioners for symmetric Toeplitz system Tx = b. When applying iterative methods to solve linear system with matrix T, we often use some preconditioner C by the preconditioned conjugate gradient (PCG) method[3]. If T is a symmetric positive definite Toeplitz matrix, two kinds of preconditioners are investigated: the "optimal" one, which minimizes \\C - T\\(F), and the "superoptimal" one, which minimize \\I - C-1T\\(F)[8]. In this paper, we present a general approach to the design of Toeplitz preconditioners based on the optimal investigating and also preconditioners C with preserving the characteristic of the given matrix T. Fast all resulting preconditioners; can be inverted via fast transform algorithms with O(NlogN) operations. For a wide class of problems, PCG method converges in a finite number of iterations independent of N so that the computational complexity for solving these Toeplitz systems is O(NlogN) [2].
引用
收藏
页码:245 / 251
页数:7
相关论文
共 50 条
  • [41] Circulant block-factorization preconditioners for elliptic problems
    Lirkov, I.D.
    Margenov, S.D.
    Vassilevski, P.S.
    Computing (Vienna/New York), 1994, 53 (01): : 59 - 74
  • [42] Circulant preconditioners for a kind of spatial fractional diffusion equations
    Zhi-Wei Fang
    Michael K. Ng
    Hai-Wei Sun
    Numerical Algorithms, 2019, 82 : 729 - 747
  • [43] CIRCULANT BLOCK-FACTORIZATION PRECONDITIONERS FOR ELLIPTIC PROBLEMS
    LIRKOV, ID
    MARGENOV, SD
    VASSILEVSKI, PS
    COMPUTING, 1994, 53 (01) : 59 - 74
  • [44] CIRCULANT AND SKEW-CIRCULANT PRECONDITIONERS FOR SKEW-HERMITIAN-TYPE TOEPLITZ-SYSTEMS
    CHAN, RH
    JIN, XQ
    BIT, 1991, 31 (04): : 632 - 646
  • [45] Circulant preconditioners for discrete ill-posed Toeplitz systems
    Dykes, L.
    Noschese, S.
    Reichel, L.
    NUMERICAL ALGORITHMS, 2017, 75 (02) : 477 - 490
  • [46] Circulant-block preconditioners for solving ordinary differential equations
    Jin, XQ
    Sin, V
    Song, LL
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) : 409 - 418
  • [47] Circulant preconditioners for discrete ill-posed Toeplitz systems
    L. Dykes
    S. Noschese
    L. Reichel
    Numerical Algorithms, 2017, 75 : 477 - 490
  • [48] Circulant preconditioners for solving singular perturbation delay differential equations
    Jin, XQ
    Lei, SL
    Wei, YM
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 327 - 336
  • [49] CIRCULANT INTEGRAL-OPERATORS AS PRECONDITIONERS FOR WIENER-HOPF EQUATIONS
    CHAN, RH
    JIN, XQ
    NG, MK
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 21 (01) : 12 - 23
  • [50] GENUINE-OPTIMAL CIRCULANT PRECONDITIONERS FOR WIENER-HOPF EQUATIONS
    Fu-rong Lin (Department of Mathematics
    Journal of Computational Mathematics, 2001, (06) : 629 - 638