Legendre Wavelet Method for Numerical Solutions of Partial Differential Equations

被引:82
|
作者
Liu, Nanshan [2 ]
Lin, En-Bing [1 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
Legendre polynomial; associated expansions; orthogonal basis; error estimate of numerical solutions;
D O I
10.1002/num.20417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce all orthogonal basis oil the square [-1, 1] x [-1, 1] generated by Legendre polynomials oil [-1, 1], and define an associated expression for the expansion of a Riemann integrable function. We describe some properties and derive a uniform convergence theorern. We then present several numerical experiments that indicate that our methods are more efficient and have better convergence results than some other methods. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 26: 81-94, 2010
引用
收藏
页码:81 / 94
页数:14
相关论文
共 50 条
  • [31] Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system
    Sahu, P. K.
    Ray, S. Saha
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 715 - 723
  • [32] Symposium: Advances in the Numerical Solutions of Partial Differential Equations
    Siddique, Mohammad
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1424 - 1424
  • [33] Numerical approximations to multiscale solutions in partial differential equations
    Hou, TY
    FRONTIERS IN NUMERICAL ANALYSIS, 2003, : 241 - 301
  • [35] Numerical Simulation on Local Solutions of Partial Differential Equations
    Imai, Hitoshi
    Sakaguchi, Hideo
    THEORETICAL AND APPLIED MECHANICS JAPAN, 2013, 61 : 185 - 193
  • [36] Numerical solutions of wavelet neural networks for fractional differential equations
    Wu, Mingqiu
    Zhang, Jinlei
    Huang, Zhijie
    Li, Xiang
    Dong, Yumin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) : 3031 - 3044
  • [37] Two-dimensional Haar Wavelet Method for Numerical Solution of Delay Partial Differential Equations
    Amin, Rohul
    Patanarapeelert, Nichaphat
    Barkat, Muhammad Awais
    Mahariq, Ibrahim
    Sitthiwirattham, Thanin
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [38] Biorthogonal wavelet-based multigrid method for the numerical solution of elliptic partial differential equations
    Shiralashetti, S. C.
    Kantli, M. H.
    Deshi, A. B.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2020, 9 (04)
  • [39] Numerical solutions of integral and integro-differential equations using Legendre polynomials
    A. H. Khater
    A. B. Shamardan
    D. K. Callebaut
    M. R. A. Sakran
    Numerical Algorithms, 2007, 46 : 195 - 218
  • [40] Numerical solutions of integral and integro-differential equations using Legendre polynomials
    Khater, A. H.
    Shamardan, A. B.
    Callebaut, D. K.
    Sakran, M. R. A.
    NUMERICAL ALGORITHMS, 2007, 46 (03) : 195 - 218