A homotopy continuation inversion of geoelectrical sounding data

被引:1
|
作者
Ghanati, Reza [1 ]
Mueller-Petke, Mike [2 ]
机构
[1] Univ Tehran, Inst Geophys, Tehran, Iran
[2] Leibniz Inst Appl Geophys, Hannover, Germany
关键词
Homotopy continuation inversion; Non-linear inversion; Geoelectrical data; Uncertainty analysis;
D O I
10.1016/j.jappgeo.2021.104356
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In nonlinear inversion of geophysical data, improper initial approximation of the model parameters usually leads to local convergence of the normal Newton iteration methods, despite enforcing constraints on the physical properties. To mitigate this problem, we present a globally convergent Homotopy continuation algorithm to solve the nonlinear least squares problem through a path-tracking strategy in model space. The proposed scheme is based on introducing a new functional to replace the quadratic Tikhonov-Phillips functional. The algorithm implementation includes a sequence of predictor-corrector steps to find the best direction of the solution. The predictor calculates an approximate solution of the corresponding new function in the Homotopy in consequence of using a new value of the continuation parameter at each step of the algorithm. The predicted approximate solution is then corrected by applying the corrector step (e.g., Gauss-Newton method). The global convergence of the Homotopy algorithm is compared with a conventional iterative method through the synthetic and real 1-D resistivity data sets. Furthermore, a bootstrap-based uncertainty analysis is provided to quantify the error in the inverted models derived from the case study. The results of blocky and smooth inversion demonstrate that the presented optimization method outperforms the standard algorithm in the sense of stability, rate of convergence, and the recovered models. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] EQUIVALENCE OF GEOELECTRICAL SECTIONS IN FREQUENCY-SOUNDING METHOD
    ENENSHTE.BS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 209 (03): : 597 - 600
  • [32] A NUMERICAL INVERSION SCHEME FOR GEOELECTRICAL SOUNDINGS
    AGUNLOYE, O
    [J]. PURE AND APPLIED GEOPHYSICS, 1981, 119 (05) : 1003 - 1023
  • [33] Geoelectrical Sounding for the Estimation of Hydraulic Conductivity of Alluvial Aquifers
    P. Sikandar
    E. W. Christen
    [J]. Water Resources Management, 2012, 26 : 1201 - 1215
  • [34] Geoelectrical Sounding for the Estimation of Hydraulic Conductivity of Alluvial Aquifers
    Sikandar, P.
    Christen, E. W.
    [J]. WATER RESOURCES MANAGEMENT, 2012, 26 (05) : 1201 - 1215
  • [35] ABOUT GEOELECTRICAL INTERPRETATION OF RESULTS OF GLOBAL MAGNETOVARIATION SOUNDING
    DMITRIEV, VI
    ROTANOVA, NM
    BALIKINA, ON
    [J]. GEOMAGNETIZM I AERONOMIYA, 1978, 18 (04): : 755 - 758
  • [36] HYDROMAGNETIC DIAGNOSTICS AND GEOELECTRICAL SOUNDING ON THE BASIS OF A SINGLE OBSERVATORY
    GULELMI, AV
    GOKHBERG, MB
    RUBAN, VF
    [J]. DOKLADY AKADEMII NAUK SSSR, 1989, 308 (03): : 578 - 581
  • [37] GEOELECTRICAL AND GEOTHERMICAL INTERPRETATION OF RESULTS OF DEPTH MAGNETOVARIATION SOUNDING
    DMITRIEV, VI
    ROTANOVA, NM
    ZAKHAROVA, IP
    BALYKINA, ON
    [J]. GEOMAGNETIZM I AERONOMIYA, 1977, 17 (02): : 315 - 321
  • [38] IMPROVEMENTS TO THE ZOHDY METHOD FOR THE INVERSION OF RESISTIVITY SOUNDING AND PSEUDOSECTION DATA
    LOKE, MH
    BARKER, RD
    [J]. COMPUTERS & GEOSCIENCES, 1995, 21 (02) : 321 - 332
  • [39] Interpretation of global geomagnetic sounding data using stochastic inversion
    Sarkar, R. K.
    Singh, O. P.
    [J]. BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA, 2007, 48 (04) : 399 - 414
  • [40] INVERSION OF CRUSTAL SOUNDING DATA FROM SOUTH-AFRICA
    PETRICK, WR
    PELTON, WH
    WARD, SH
    [J]. GEOPHYSICS, 1977, 42 (01) : 174 - 174