A homotopy continuation inversion of geoelectrical sounding data

被引:1
|
作者
Ghanati, Reza [1 ]
Mueller-Petke, Mike [2 ]
机构
[1] Univ Tehran, Inst Geophys, Tehran, Iran
[2] Leibniz Inst Appl Geophys, Hannover, Germany
关键词
Homotopy continuation inversion; Non-linear inversion; Geoelectrical data; Uncertainty analysis;
D O I
10.1016/j.jappgeo.2021.104356
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In nonlinear inversion of geophysical data, improper initial approximation of the model parameters usually leads to local convergence of the normal Newton iteration methods, despite enforcing constraints on the physical properties. To mitigate this problem, we present a globally convergent Homotopy continuation algorithm to solve the nonlinear least squares problem through a path-tracking strategy in model space. The proposed scheme is based on introducing a new functional to replace the quadratic Tikhonov-Phillips functional. The algorithm implementation includes a sequence of predictor-corrector steps to find the best direction of the solution. The predictor calculates an approximate solution of the corresponding new function in the Homotopy in consequence of using a new value of the continuation parameter at each step of the algorithm. The predicted approximate solution is then corrected by applying the corrector step (e.g., Gauss-Newton method). The global convergence of the Homotopy algorithm is compared with a conventional iterative method through the synthetic and real 1-D resistivity data sets. Furthermore, a bootstrap-based uncertainty analysis is provided to quantify the error in the inverted models derived from the case study. The results of blocky and smooth inversion demonstrate that the presented optimization method outperforms the standard algorithm in the sense of stability, rate of convergence, and the recovered models. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Delineation of layer boundaries from smooth models obtained from the geoelectrical sounding data inversion
    Israil, Mohammad
    [J]. ACTA GEOPHYSICA, 2006, 54 (02) : 126 - 141
  • [2] Delineation of layer boundaries from smooth models obtained from the geoelectrical sounding data inversion
    Mohammad Israil
    [J]. Acta Geophysica, 2006, 54 : 126 - 141
  • [3] Bayesian inversion of geoelectrical resistivity data
    Andersen, KE
    Brooks, SP
    Hansen, MB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 619 - 642
  • [4] INVERSION OF MAGNETOTELLURIC SOUNDING DATA
    SUN, BJ
    CHEN, LS
    WANG, GG
    MA, T
    [J]. ACTA GEOPHYSICA SINICA, 1985, 28 (02): : 218 - 229
  • [5] Inversion of Magnetic Resonance Sounding data
    Yaramanci, U.
    Hertrich, M.
    [J]. BOLETIN GEOLOGICO Y MINERO, 2007, 118 (03): : 473 - 488
  • [6] NONLINEAR INVERSION OF RESISTIVITY SOUNDING DATA
    SEN, MK
    BHATTACHARYA, BB
    STOFFA, PL
    [J]. GEOPHYSICS, 1993, 58 (04) : 496 - 507
  • [7] An implementation of differential evolution algorithm for inversion of geoelectrical data
    Balkaya, Caglayan
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2013, 98 : 160 - 175
  • [8] Infrasound data inversion for atmospheric sounding
    Lalande, J. -M.
    Sebe, O.
    Landes, M.
    Blanc-Benon, Ph.
    Matoza, R. S.
    Le Pichon, A.
    Blanc, E.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (01) : 687 - 701
  • [9] An improved grey wolf optimizer algorithm for the inversion of geoelectrical data
    Si-Yu Li
    Shu-Ming Wang
    Peng-Fei Wang
    Xiao-Lu Su
    Xin-Song Zhang
    Zhi-Hui Dong
    [J]. Acta Geophysica, 2018, 66 : 607 - 621
  • [10] COMPARING PARALLEL PROGRAMMING ENVIRONMENTS FOR THE JOINT INVERSION OF GEOELECTRICAL DATA
    Pieta, Anna
    Bala, Justyna
    [J]. COMPUTER SCIENCE-AGH, 2009, 10 : 85 - 95