On the eigenvalues of the spatial sign covariance matrix in more than two dimensions

被引:15
|
作者
Duerre, Alexander [1 ]
Tyler, David E. [2 ]
Vogel, Daniel [3 ]
机构
[1] Tech Univ Dortmund, Fak Stat, D-44221 Dortmund, Germany
[2] Rutgers State Univ, Dept Stat & Biostat, Piscataway, NJ 08854 USA
[3] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
基金
美国国家科学基金会;
关键词
Elliptical distribution; Spatial Kendall's tau matrix; Spatial sign; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.spl.2016.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We gather several results on the eigenvalues of the spatial sign covariance matrix of an elliptical distribution. It is shown that the eigenvalues are a one-to-one function of the eigenvalues of the shape matrix and that they are closer together than the latter. We further provide a one-dimensional integral representation of the eigenvalues, which facilitates their numerical computation. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [1] On eigenvalues of a high-dimensional spatial-sign covariance matrix
    Li, Weiming
    Wang, Qinwen
    Yao, Jianfeng
    Zhou, Wang
    BERNOULLI, 2022, 28 (01) : 606 - 637
  • [2] A generalized spatial sign covariance matrix
    Raymaekers, Jakob
    Rousseeuw, Peter
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 94 - 111
  • [3] The spatial sign covariance matrix with unknown location
    Duerre, Alexander
    Vogel, Daniel
    Tyler, David E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 107 - 117
  • [4] The k-step spatial sign covariance matrix
    Croux, C.
    Dehon, C.
    Yadine, A.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 137 - 150
  • [5] The k-step spatial sign covariance matrix
    C. Croux
    C. Dehon
    A. Yadine
    Advances in Data Analysis and Classification, 2010, 4 : 137 - 150
  • [6] Spatial selection of wide-band sources by covariance matrix eigenvalues
    Sytnik, O.V.
    Kartashov, V.M.
    Suprun, A.A.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2014, 73 (09): : 793 - 801
  • [7] THE SIGN MATRIX AND THE SEPARATION OF MATRIX EIGENVALUES
    HOWLAND, JL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 49 (FEB) : 221 - 232
  • [8] Distribution approximation of covariance matrix eigenvalues
    Tsukada, Shin-ichi
    Sugiyama, Takatoshi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4313 - 4325
  • [9] The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions
    Magyar, Andrew F.
    Tyler, David E.
    BIOMETRIKA, 2014, 101 (03) : 673 - 688
  • [10] On the Bias in Eigenvalues of Sample Covariance Matrix
    Hayashi, Kentaro
    Yuan, Ke-Hai
    Liang, Lu
    QUANTITATIVE PSYCHOLOGY, 2018, 233 : 221 - 233