Analysis of Lumber Prices Time Series Using Long Short-Term Memory Artificial Neural Networks

被引:12
|
作者
Lopes, Dercilio Junior Verly [1 ]
Bobadilha, Gabrielly dos Santos [1 ]
Bedette, Amanda Peres Vieira [1 ]
机构
[1] Mississippi State Univ, Coll Forest Resources, Dept Sustainable Bioprod, Forest & Wildlife Res Ctr FWRC, Mississippi State, MS 39762 USA
来源
FORESTS | 2021年 / 12卷 / 04期
关键词
machine-learning; neural networks; random length; stock prices; forecasting; LSTM;
D O I
10.3390/f12040428
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
This manuscript confirms the feasibility of using a long short-term memory (LSTM) recurrent neural network (RNN) to forecast lumber stock prices during the great and Coronavirus disease 2019 (COVID-19) pandemic recessions in the USA. The database was composed of 5012 data entries divided into recession periods. We applied a timeseries cross-validation that divided the dataset into an 80:20 training/validation ratio. The network contained five LSTM layers with 50 units each followed by a dense output layer. We evaluated the performance of the network via mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) for 30, 60, and 120 timesteps and the recession periods. The metrics results indicated that the network was able to capture the trend for both recession periods with a remarkably low degree of error. Timeseries forecasting may help the forest and forest product industries to manage their inventory, transportation costs, and response readiness to critical economic events.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Prediction of InSAR deformation time-series using a long short-term memory neural network
    Chen, Yi
    He, Yi
    Zhang, Lifeng
    Chen, Youdong
    Pu, Hongyu
    Chen, Baoshan
    Gao, Liya
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (18) : 6921 - 6944
  • [22] Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks
    Alonso-Sarria, Francisco
    Valdivieso-Ros, Carmen
    Gomariz-Castillo, Francisco
    REMOTE SENSING, 2024, 16 (12)
  • [23] Time Series Analysis and prediction of bitcoin using Long Short Term Memory Neural Network
    Adegboruwa, Temiloluwa I.
    Adeshina, Steve A.
    Boukar, Moussa M.
    2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2019,
  • [24] Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis
    Jan, Faheem
    Shah, Ismail
    Ali, Sajid
    ENERGIES, 2022, 15 (09)
  • [25] Dialog State Tracking Using Long Short-term Memory Neural Networks
    Yang, Xiaohao
    Liu, Jia
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1800 - 1804
  • [26] Deflated reputation using multiplicative long short-term memory neural networks
    Ma, Yixuan
    Zhang, Zhenji
    Li, Deming
    Tang, Mincong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 118 : 198 - 207
  • [27] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [28] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [29] Predicting Marimba Stickings Using Long Short-Term Memory Neural Networks
    Chong, Jet Kye
    Correa, Debora
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 339 - 352
  • [30] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194