Multifractal spectra of Moran measures without local dimension

被引:11
|
作者
Yuan, Zhihui [1 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
关键词
multifractal; upper local dimension; lower local dimesnion;
D O I
10.1088/1361-6544/ab45d7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A measure without local dimension is a measure such that local dimension does not exist for any point in its support. In this paper, we construct such a class of Moran measures and study their lower and upper local dimensions. We show that the related ?free energy? function (L-q-spectrum) does not exist. Nevertheless, we can obtain the full Hausdroff and packing dimension spectra for level sets defined by lower and upper local dimensions. They can be viewed as a generalized multifractal formalism.
引用
收藏
页码:5060 / 5086
页数:27
相关论文
共 50 条
  • [1] MIXED MULTIFRACTAL SPECTRA OF HOMOGENEOUS MORAN MEASURES
    Hattab, Jihed
    Selmi, Bilel
    Verma, Saurabh
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [2] Multifractal formalism for generalised local dimension spectra of Gibbs measures on the real line
    Jaerisch, Johannes
    Sumi, Hiroki
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [3] The multifractal spectrum of some moran measures
    Min Wu
    [J]. Science in China Series A: Mathematics, 2005, 48 : 1097 - 1112
  • [4] The multifractal spectrum of some Moran measures
    Wu, M
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (08): : 1097 - 1112
  • [5] The multifractal spectrum of some Moran measures
    WU Min School of Mathematical Sciences
    [J]. Science China Mathematics, 2005, (08) : 1097 - 1112
  • [6] On the Equivalence of Multifractal Measures on Moran Sets
    Ben Mabrouk, Anouar
    Selmi, Bilel
    [J]. FILOMAT, 2022, 36 (10) : 3479 - 3490
  • [7] The multifractal dimension functions of homogeneous Moran measure
    Xiao, Jiaqing
    Wu, Min
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2008, 16 (02) : 175 - 185
  • [8] The local dimension of Moran measures satisfying the strong separation condition
    Dai, Meifeng
    Liu, Dehua
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1025 - 1030
  • [9] Dimension spectra for multifractal measures with connections to nonparametric density estimation
    Frigyesi, A
    Hössjer, O
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (03) : 351 - 395
  • [10] On the multifractal measures: proportionality and dimensions of Moran sets
    Bilel Selmi
    Zhihui Yuan
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3949 - 3969