Multifractal formalism for generalised local dimension spectra of Gibbs measures on the real line

被引:1
|
作者
Jaerisch, Johannes [1 ]
Sumi, Hiroki [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[2] Kyoto Univ, Grad Sch Human & Environm Studies, Dept Human Coexistence, Course Math Sci,Sakyo Ku, Yoshida Nihonmatsu Cho, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
Multifractal formalism; Conformal iterated function systems; Fractal functions; Local dimension spectrum; HOLDER-DIFFERENTIABILITY; POINTS; DIVERGENCE; GRAPH; SETS;
D O I
10.1016/j.jmaa.2020.124246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the multifractal formalism for the local dimension spectrum of a Gibbs measure mu supported on the attractor Lambda of a conformal iterated functions system on the real line. Namely, for alpha is an element of R, we establish the multifractal formalism for the Hausdorff dimension of the set of x is an element of Lambda for which the mu-measure of a ball of radius r(n) centred at x obeys a power law r(n)(alpha), for a sequence r(n) -> 0. This allows us to investigate the Holder regularity of various fractal functions, such as distribution functions and conjugacy maps associated with conformal iterated function systems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 12 条