DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain

被引:451
|
作者
Ünal, E
Arbel-Eden, A
Sattler, U
Shroff, R
Lichten, M
Haber, JE
Koshland, D
机构
[1] Carnegie Inst Sci, Howard Hughes Med Inst, Dept Embryol, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
[3] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Dept Biol, Waltham, MA 02454 USA
[4] NCI, Biochem Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1016/j.molcel.2004.11.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The postreplicative repair of double-strand breaks (DSBs) is thought to require sister chromatid cohesion, provided by the cohesin complex along the chromosome arms. A further specialized role for cohesin in DSB repair is suggested by its de novo recruitment to regions of DNA damage in mammals. Here, we show in budding yeast that a single DSB induces the formation of a similar to100 kb cohesin domain around the lesion. Our analyses suggest that the primary DNA damage checkpoint kinases Mec1p and Tel1p phosphorylate histone H2AX to generate a large domain, which is permissive for cohesin binding. Cohesin binding to the phospho-H2AX domain is enabled by Mre11p, a component of a critical repair complex, and Scc2p, a component of the cohesin loading machinery that is necessary for sister chromatid cohesion. We also provide evidence that the DSB-induced cohesin domain functions in postreplicative repair.
引用
收藏
页码:991 / 1002
页数:12
相关论文
共 50 条
  • [31] Nucleolin Participates in DNA Double-Strand Break-Induced Damage Response through MDC1-Dependent Pathway
    Kobayashi, Junya
    Fujimoto, Hiroko
    Sato, Jun
    Hayashi, Ikue
    Burma, Sandeep
    Matsuura, Shinya
    Chen, David J.
    Komatsu, Kenshi
    PLOS ONE, 2012, 7 (11):
  • [32] Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break
    Shroff, R
    Arbel-Eden, A
    Pilch, D
    Ira, G
    Bonner, WM
    Petrini, JH
    Haber, JE
    Lichten, M
    CURRENT BIOLOGY, 2004, 14 (19) : 1703 - 1711
  • [33] Optimizing the response, precision, and cost of a DNA double-strand break dosimeter
    Obeidat, M.
    McConnell, K.
    Bui, B.
    Stathakis, S.
    Rasmussen, K.
    Papanikolaou, N.
    Shim, E. Y.
    Kirby, N.
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (10):
  • [34] Meta-analysis of DNA double-strand break response kinetics
    Kochan, Jakub A.
    Desclos, Emilie C. B.
    Bosch, Ruben
    Meister, Luna
    Vriend, Lianne E. M.
    van Attikum, Haico
    Krawczyk, Przemek M.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (22) : 12625 - 12637
  • [35] Abnormalities in DNA double-strand break response beyond primary immunodeficiency
    Shinichiro Nakada
    International Journal of Hematology, 2011, 93 : 425 - 433
  • [37] The requirement of artemis in double-strand break repair depends on the type of DNA damage
    Kurosawa, Aya
    Koyama, Hideki
    Takayama, Shinichi
    Miki, Kensuke
    Ayusawa, Dai
    Fujii, Michihiko
    Iiizumi, Susumu
    Adachi, Noritaka
    DNA AND CELL BIOLOGY, 2008, 27 (01) : 55 - 61
  • [38] Smoking during pregnancy causes double-strand DNA break damage to the placenta
    Slatter, Tania L.
    Park, Lydia
    Anderson, Karyn
    Lailai-Tasmania, Viwa
    Herbison, Peter
    Clow, William
    Royds, Janice A.
    Devenish, Celia
    Hung, Noelyn A.
    HUMAN PATHOLOGY, 2014, 45 (01) : 17 - 26
  • [39] Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair
    Zhang, Jun
    Lu, Xiaopeng
    MoghaddamKohi, Sara
    Shi, Lei
    Xu, Xingzhi
    Zhu, Wei-Guo
    DNA REPAIR, 2021, 107
  • [40] Histone Modifications and DNA Double-Strand Break Repair after Exposure to Ionizing Radiations
    Hunt, Clayton R.
    Ramnarain, Deepti
    Horikoshi, Nobuo
    Iyengar, Puneeth
    Pandita, Raj K.
    Shay, Jerry W.
    Pandita, Tej K.
    RADIATION RESEARCH, 2013, 179 (04) : 383 - 392