Asymptotic Confidence Intervals for Variograms of Stationary Time Series

被引:2
|
作者
Bisgaard, Soren [1 ,2 ]
Khachatryan, Davit [1 ]
机构
[1] Univ Massachusetts, Eugene M Isenberg Sch Management, Amherst, MA 01003 USA
[2] Univ Amsterdam, Inst Business & Ind Stat, Amsterdam, Netherlands
关键词
autocorrelation function; autoregressive integrated moving average processes; delta method;
D O I
10.1002/qre.1052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Industrial processes are often monitored via data sampled at a high frequency and hence are likely to be autocorrelated time series that may or may not be stationary. To determine if a time series is stationary or not the standard approach is to check whether sample autocorrelation function fades out relatively quickly. An alternative and somewhat sounder approach is to use the variogram. In this article we review the basic properties of the variogram and then derive a general expression for asymptotic confidence intervals for variogram based on the Delta method. We illustrate the computations with an industrial process example. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [21] ON THE USE OF VARIOGRAMS FOR THE PREDICTION OF TIME-SERIES
    GEVERS, M
    [J]. SYSTEMS & CONTROL LETTERS, 1985, 6 (01) : 15 - 21
  • [22] Predicting multivariate time series in real time with confidence intervals: Applications to renewable energy
    Hirata, Yoshito
    Aihara, Kazuyuki
    Suzuki, Hideyuki
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (12): : 2451 - 2460
  • [23] Predicting multivariate time series in real time with confidence intervals: Applications to renewable energy
    Yoshito Hirata
    Kazuyuki Aihara
    Hideyuki Suzuki
    [J]. The European Physical Journal Special Topics, 2014, 223 : 2451 - 2460
  • [24] DETECTING STATIONARY INTERVALS FOR RANDOM WAVES USING TIME SERIES CLUSTERING
    Euan, Carolina
    Ortega, Joaquin
    Alvarez-Esteban, Pedro C.
    [J]. 33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 4B, 2014,
  • [25] Asymptotic optimality in a class of estimating functions for stationary and non-stationary time series
    Hwang, S. Y.
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 272 - 272
  • [26] Confidence Regions for Parameters in Stationary Time Series Models With Gaussian Noise
    Zhang, Xiuzhen
    Zhang, Riquan
    Lu, Zhiping
    [J]. FRONTIERS IN PHYSICS, 2022, 9
  • [27] THE EFFECT OF PARAMETER UNCERTAINTY ON FORECAST VARIANCES AND CONFIDENCE-INTERVALS FOR UNIT-ROOT AND TREND STATIONARY TIME-SERIES MODELS
    SAMPSON, M
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 1991, 6 (01) : 67 - 76
  • [28] Methods for estimating confidence intervals in interrupted time series analyses of health interventions
    Zhang, Fang
    Wagner, Anita K.
    Soumerai, Stephen B.
    Ross-Degnan, Dennis
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2009, 62 (02) : 143 - 148
  • [29] ASYMPTOTIC SIMULTANEOUS CONFIDENCE INTERVALS FOR THE PROBABILITIES OF A MULTINOMIAL DISTRIBUTION
    QUESENBERRY, CP
    HURST, DC
    [J]. BIOMETRICS, 1959, 15 (03) : 495 - 495
  • [30] Asymptotic Dykstra–Parsons Distribution, Estimates and Confidence Intervals
    Salvador Pintos
    Claritza Bohorquez
    Nestor V. Queipo
    [J]. Mathematical Geosciences, 2011, 43 : 329 - 343