Markoff triples and strong approximation

被引:20
|
作者
Bourgain, Jean [1 ]
Gamburd, Alexander [2 ]
Sarnak, Peter [1 ,3 ]
机构
[1] IAS, San Francisco, CA 94104 USA
[2] CUNY, Grad Ctr, New York, NY 10017 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
VARIETIES; NUMBERS; POINTS;
D O I
10.1016/j.crma.2015.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the transitivity properties of the group of morphisms generated by Vieta involutions on the solutions in congruences to the Markoff equation as well as to other Markoff type affine cubic surfaces. These are dictated by the finite (Q) over bar orbits of these actions and these can be determined effectively. The results are applied to give forms of strong approximation for integer points, and to sieving, on these surfaces. (C) 2016 Published by Elsevier Masson SAS on behalf of Academie des sciences.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 50 条
  • [1] Palindromization and construction of Markoff triples
    Abram, Antoine
    Lapointe, Melodie
    Reutenauer, Christophe
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 809 : 21 - 29
  • [2] ON THE STRUCTURE OF GRAPHS OF MARKOFF TRIPLES
    Konyagin, Sergei V.
    Makarychev, Sergey V.
    Shparlinski, Igor E.
    Vyugin, Ilya V.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (02): : 637 - 648
  • [3] Markoff triples and quasifuchsian groups
    Bowditch, BH
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 : 697 - 736
  • [4] Integral Hasse Principle and Strong Approximation for Markoff Surfaces
    Loughran, Daniel
    Mitankin, Vladimir
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (18) : 14086 - 14122
  • [5] Reprint of: Palindromization and construction of Markoff triples
    Abram, Antoine
    Lapointe, Melodie
    Reutenauer, Christophe
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 834 : 75 - 83
  • [6] Markoff–Rosenberger triples in geometric progression
    Enrique González-Jiménez
    [J]. Acta Mathematica Hungarica, 2014, 142 : 231 - 243
  • [7] CHRISTOFFEL WORDS AND MARKOFF TRIPLES: AN ALGEBRAIC APPROACH
    Lasnier, Alex
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1195 - 1216
  • [8] Markoff-Rosenberger triples in arithmetic progression
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2013, 53 : 53 - 63
  • [9] Counting Minimal Triples for a Generalized Markoff Equation
    Srinivasan, A.
    Calvo, L. A.
    [J]. EXPERIMENTAL MATHEMATICS, 2024,
  • [10] MARKOFF-ROSENBERGER TRIPLES WITH FIBONACCI COMPONENTS
    Tengely, Szabolcs
    [J]. GLASNIK MATEMATICKI, 2020, 55 (01) : 29 - 36