CHRISTOFFEL WORDS AND MARKOFF TRIPLES: AN ALGEBRAIC APPROACH

被引:0
|
作者
Lasnier, Alex [1 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
关键词
Christoffel words; Markoff triples; Uniqueness conjecture for Markoff numbers; Representation theory; 16G20; 11D25; 68R15; NUMBERS; UNIQUENESS; FORMS;
D O I
10.1080/00927872.2011.642044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a family of modules, called Markoff modules, generated by a cluster-mutation-like iterative process. We show that these modules are combinatorially similar to Christoffel words. Furthermore, we construct a bijective map between the set of Markoff module triples and the set of proper Markoff triples. This allows us to interpret the uniqueness conjecture for Markoff numbers within an algebraic framework.
引用
收藏
页码:1195 / 1216
页数:22
相关论文
共 50 条
  • [1] Christoffel words and weak Markoff theory
    Reutenauer, Christophe
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 127
  • [2] Palindromization and construction of Markoff triples
    Abram, Antoine
    Lapointe, Melodie
    Reutenauer, Christophe
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 809 : 21 - 29
  • [3] Markoff triples and quasifuchsian groups
    Bowditch, BH
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 : 697 - 736
  • [4] ON THE STRUCTURE OF GRAPHS OF MARKOFF TRIPLES
    Konyagin, Sergei V.
    Makarychev, Sergey V.
    Shparlinski, Igor E.
    Vyugin, Ilya V.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (02): : 637 - 648
  • [5] Markoff triples and strong approximation
    Bourgain, Jean
    Gamburd, Alexander
    Sarnak, Peter
    [J]. COMPTES RENDUS MATHEMATIQUE, 2016, 354 (02) : 131 - 135
  • [6] Reprint of: Palindromization and construction of Markoff triples
    Abram, Antoine
    Lapointe, Melodie
    Reutenauer, Christophe
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 834 : 75 - 83
  • [7] Markoff–Rosenberger triples in geometric progression
    Enrique González-Jiménez
    [J]. Acta Mathematica Hungarica, 2014, 142 : 231 - 243
  • [8] MARKOFF-ROSENBERGER TRIPLES WITH FIBONACCI COMPONENTS
    Tengely, Szabolcs
    [J]. GLASNIK MATEMATICKI, 2020, 55 (01) : 29 - 36
  • [9] Counting Minimal Triples for a Generalized Markoff Equation
    Srinivasan, A.
    Calvo, L. A.
    [J]. EXPERIMENTAL MATHEMATICS, 2024,
  • [10] Markoff-Rosenberger triples in arithmetic progression
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2013, 53 : 53 - 63