Fractal Features of Fractional Brownian Motion and Their Application in Economics

被引:2
|
作者
Cheng, Qing [1 ]
Jiao, Jinpu [2 ]
机构
[1] China Agr Univ, Coll Econ & Management, Beijing 100083, Peoples R China
[2] Shanghai Gold Exchange, Shanghai 200001, Peoples R China
关键词
fractional Brownian motion (FBM); fractal features; rescaled range (R/S) analysis; gold price sequence; SCALE-INVARIANCE; SANDSTONE PORES; DIMENSION; NOISES;
D O I
10.18280/ijht.370324
中图分类号
O414.1 [热力学];
学科分类号
摘要
The physical phenomena with fractal features cannot be described by the standard Brownian motion (BM), but by the improved method of fractional Brownian motion (FBM). This paper explores the fractal features of fractional Brownian motion (FBM) and then applies the FBM to interpret the fractal features and fractal scales of gold price fluctuations in China. The results show that the gold price fluctuations in China have obvious, scale-invariant fractal features. Hence, the Chinese gold market is advised to introduce fractal risk management to control the risks. This research widens the applicable scope of the FBM and sheds new light on financial market analysis.
引用
下载
收藏
页码:863 / 868
页数:6
相关论文
共 50 条
  • [21] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [22] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [23] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [24] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [25] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [26] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [27] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [28] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [29] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [30] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63