A comparison of some random effect models for parameter estimation in recurrent events

被引:7
|
作者
Ng, ETM
Cook, RJ
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
英国医学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Poisson process; renewal process; mixing distribution; bias; multiplicative intensity model;
D O I
10.1016/S0895-7177(00)00117-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider maximum likelihood estimation for multiplicative intensity models with random effects arising from point processes. The methods of estimation include Gauss-Hermite integration based on log-normal random effects and the EM algorithm for nonparametric estimation of the mixing distribution. The former approximates the marginal likelihood by the Gauss-Hermite rule and the latter is most suitable for discrete random effects. We contrast these two methods of estimation with respect to the bias, relative efficiency, and coverage probability of the parameter estimates. We demonstrate, via simulation, that the regression parameter estimates from these two methods have negligible bias and their variance estimates are also valid for practical use. This desirable feature is also robust to misspecification of the mixing. The estimate for the variance parameter under the log-normal random effect model may have small positive bias if the true mixing distribution is highly discrete. In contrast, the EM algorithm for a nonparametric random effect distribution provides practically unbiased estimate for the variance though on occasion it will give an unrealistically large value. We provide empirical evidence that specification of the baseline intensity function as a piecewise constant function is quite robust to misspecification of the baseline intensity function. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 50 条
  • [31] Some novel techniques of parameter estimation for dynamical models in biological systems
    Liu, F.
    Burrage, K.
    Hamilton, N. A.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (02) : 235 - 260
  • [32] Some Remarks about Robust Estimation of the Scale Parameter in Weighted Models
    Blazej, P.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (13) : 2232 - 2240
  • [33] Some applications of conditional events and random sets for image estimation and system modeling
    Kelly, PA
    Derin, H
    Gong, WB
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 14 - 24
  • [34] THE EFFECT OF RANDOM MEASUREMENT ERRORS ON KINETIC TRANSPORT PARAMETER-ESTIMATION
    COLLINS, JC
    VAUGHN, WK
    CHILUKURI, MB
    HORNE, DW
    PROGRESS IN FOOD AND NUTRITION SCIENCE, 1988, 12 (03): : 297 - 314
  • [35] Parameter estimation approaches for multinomial processing tree models: A comparison for models of memory and judgment
    Gross, Julia
    Pachur, Thorsten
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 98
  • [36] Estimation of Smooth Functionals of Location Parameter in Gaussian and Poincare Random Shift Models Estimation of Smooth functionals
    Koltchinskii, Vladimir
    Zhilova, Mayya
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2021, 83 (02): : 569 - 596
  • [37] Comparison of Random Regression Models with Different Order Legendre Polynomials for Genetic Parameter Estimation on Race Completion Speed of Arabian Horses
    Onder, Hasan
    Sen, Ugur
    Piwczynski, Dariusz
    Kolenda, Magdalena
    Drewka, Magdalena
    Abaci, Samet Hasan
    Takma, Cigdem
    ANIMALS, 2022, 12 (19):
  • [38] A COMPARISON OF 2 MODELS OF FUNCTIONAL RESPONSE WITH EMPHASIS ON PARAMETER ESTIMATION PROCEDURES
    GLASS, NR
    CANADIAN ENTOMOLOGIST, 1970, 102 (09): : 1094 - &
  • [39] THE ROLE OF THE SCALE PARAMETER IN THE ESTIMATION AND COMPARISON OF MULTINOMIAL LOGIT-MODELS
    SWAIT, J
    LOUVIERE, J
    JOURNAL OF MARKETING RESEARCH, 1993, 30 (03) : 305 - 314
  • [40] DYNAMIC VENTILATION SCINTIGRAPHY - A COMPARISON OF PARAMETER-ESTIMATION GATING MODELS
    HACK, SN
    PAONI, RA
    STRATTON, H
    VALVANO, M
    LINE, BR
    COOPER, JA
    JOURNAL OF NUCLEAR MEDICINE, 1988, 29 (11) : 1842 - 1847