A comparison of some random effect models for parameter estimation in recurrent events

被引:7
|
作者
Ng, ETM
Cook, RJ
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
英国医学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Poisson process; renewal process; mixing distribution; bias; multiplicative intensity model;
D O I
10.1016/S0895-7177(00)00117-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider maximum likelihood estimation for multiplicative intensity models with random effects arising from point processes. The methods of estimation include Gauss-Hermite integration based on log-normal random effects and the EM algorithm for nonparametric estimation of the mixing distribution. The former approximates the marginal likelihood by the Gauss-Hermite rule and the latter is most suitable for discrete random effects. We contrast these two methods of estimation with respect to the bias, relative efficiency, and coverage probability of the parameter estimates. We demonstrate, via simulation, that the regression parameter estimates from these two methods have negligible bias and their variance estimates are also valid for practical use. This desirable feature is also robust to misspecification of the mixing. The estimate for the variance parameter under the log-normal random effect model may have small positive bias if the true mixing distribution is highly discrete. In contrast, the EM algorithm for a nonparametric random effect distribution provides practically unbiased estimate for the variance though on occasion it will give an unrealistically large value. We provide empirical evidence that specification of the baseline intensity function as a piecewise constant function is quite robust to misspecification of the baseline intensity function. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 50 条
  • [1] Comparison of repeatable and random regression models for genetic parameter estimation on Thoroughbreds
    Coskun, Umit
    Onder, Hasan
    Abaci, Samet Hasan
    LARGE ANIMAL REVIEW, 2020, 26 (06): : 349 - 352
  • [2] Semiparametric transformation models with random effects for recurrent events
    Zeng, Donglin
    Lin, D. Y.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 167 - 180
  • [3] Parameter estimation for correlated recurrent events under informative monitoring
    Zamba, K. D.
    Adekpedjou, Akim
    STATISTICAL METHODOLOGY, 2011, 8 (03) : 273 - 290
  • [4] Coupling random inputs for parameter estimation in complex models
    Spence, Michael A.
    Blackwell, Paul G.
    STATISTICS AND COMPUTING, 2016, 26 (06) : 1137 - 1146
  • [5] Coupling random inputs for parameter estimation in complex models
    Michael A. Spence
    Paul G. Blackwell
    Statistics and Computing, 2016, 26 : 1137 - 1146
  • [6] Models and estimation for systems with recurrent events and usage processes
    Jerald F. Lawless
    Martin J. Crowder
    Lifetime Data Analysis, 2010, 16 : 547 - 570
  • [7] Models and estimation for systems with recurrent events and usage processes
    Lawless, Jerald F.
    Crowder, Martin J.
    LIFETIME DATA ANALYSIS, 2010, 16 (04) : 547 - 570
  • [8] Estimation of dynamic models of recurrent events with censored data
    Lee, Sanghyeok
    Gorgens, Tue
    ECONOMETRICS JOURNAL, 2021, 24 (02): : 199 - 224
  • [9] Comparison of parameter estimation methods for crop models
    Tremblay, M
    Wallach, D
    AGRONOMIE, 2004, 24 (6-7): : 351 - 365
  • [10] Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus
    Marcos A. Capistrán
    Miguel A. Moreles
    Bruno Lara
    Bulletin of Mathematical Biology, 2009, 71 : 1890 - 1901