aphid: an R package for analysis with profile hidden Markov models

被引:12
|
作者
Wilkinson, Shaun P. [1 ]
机构
[1] Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand
关键词
D O I
10.1093/bioinformatics/btz159
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
aSummary: Hidden Markov models (HMMs) and profile HMMs form an integral part of biological sequence analysis, supporting an ever-growing list of applications. The aphid R package can be used to derive, train, plot, import and export HMMs and profile HMMs in the R environment. Computationally-intensive dynamic programing recursions, such as the Viterbi, forward and backward algorithms are implemented in C++ and parallelized for increased speed and efficiency.
引用
收藏
页码:3829 / 3830
页数:2
相关论文
共 50 条
  • [41] Computational Bayesian analysis of hidden Markov models
    Ryden, T
    Titterington, DM
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 194 - 211
  • [42] Efficient sensitivity analysis in hidden markov models
    Renooij, S. (S.Renooij@uu.nl), 1600, Elsevier Inc. (53):
  • [43] Ensemble hidden Markov models for biosignal analysis
    Rezek, I
    Roberts, SJ
    DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 387 - 391
  • [44] Hidden Markov models in biological sequence analysis
    Birney, E.
    1600, IBM Corporation (45): : 3 - 4
  • [45] Hidden Markov models in biological sequence analysis
    Birney, E
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (3-4) : 449 - 454
  • [46] Efficient sensitivity analysis in hidden Markov models
    Renooij, Silja
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (09) : 1397 - 1414
  • [47] An Application of Hidden Markov Models in Subjectivity Analysis
    Rustamov, Samir
    Mustafayev, Elshan
    Clements, Mark A.
    2013 7TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2013, : 64 - 67
  • [48] Hidden Markov models for spatial pattern analysis
    Rodriguez, F.
    Bautista, S.
    ECOSISTEMAS, 2006, 15 (03): : 68 - 75
  • [49] State Sequence Analysis in Hidden Markov Models
    Grinberg, Yuri
    Perkins, Theodore J.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 336 - 344
  • [50] Hidden Markov models and genome sequence analysis
    Eddy, SR
    FASEB JOURNAL, 1998, 12 (08): : A1327 - A1327