Estimating the Membrane Properties of Vestibular Type II Hair Cells using Continuous-time System Identification

被引:3
|
作者
Pan, Siqi [1 ]
Welsh, James S. [1 ]
Brichta, Alan M. [2 ]
Drury, Hannah R. [2 ]
Stoddard, Jeremy G. [1 ]
机构
[1] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW, Australia
[2] Univ Newcastle, Sch Biomed Sci & Pharm, Callaghan, NSW, Australia
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
System identification; Continuous-time systems; Instrumental variable method; Biological systems; PATCH-CLAMP TECHNIQUES;
D O I
10.1016/j.ifacol.2020.12.477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we apply a continuous-time system identification method, known as the Simplified Refined Instrumental Variable method for Continuous-time systems (SRIVC), to the problem of estimating membrane properties of vestibular Type II hair cells. Due to the non-ideal characteristics of the experimental system, additional parameters, other than those of the membrane are required to be estimated. The SRIVC algorithm is modified to allow known poles and zeros to be forced into the estimator. This modified algorithm is then applied to the identification of the membrane properties of vestibular Type II hair cells, yielding results commensurate with typically accepted values. Copyright (C) 2020 The Authors.
引用
收藏
页码:548 / 553
页数:6
相关论文
共 50 条
  • [41] INVARIANCE OF THE DYNAMIC PROPERTIES OF A LINEAR CONTINUOUS-TIME SYSTEM
    SOH, CB
    GOH, HC
    TEO, CK
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1991, 22 (09) : 1637 - 1646
  • [42] Continuous-time MISO fractional system identification using higher-order-statistics
    Chetoui, Manel
    Aoun, Mohamed
    Malti, Rachid
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1611 - 1638
  • [43] Integrated Neural Networks for Nonlinear Continuous-Time System Identification
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 851 - 856
  • [44] Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation
    Krishnanathan, Kirubhakaran
    Anderson, Sean R.
    Billings, Stephen A.
    Kadirkamanathan, Visakan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (15) : 3537 - 3544
  • [45] Continuous-time System Identification for Discrete Data by Curve Fitting
    Ito, Toshio
    Senta, Yosuke
    Nagashima, Fumio
    2015 International Automatic Control Conference (CACS), 2015, : 40 - 47
  • [46] Continuous-time Recurrent Multilayer Perceptrons for nonlinear system identification
    Yu, W
    Li, X
    2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 1636 - 1641
  • [47] DIGITAL IDENTIFICATION OF A CONTINUOUS-TIME SYSTEM AND SOME RELATED ISSUES
    BAI, EW
    INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (01) : 149 - 170
  • [48] An asymptotically optimal indirect approach to continuous-time system identification
    Gonzalez, Rodrigo A.
    Rojas, Cristian R.
    Welsh, James S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 638 - 643
  • [49] Parameter and derivative estimation for nonlinear continuous-time system identification
    Niethammer, M
    Menold, PH
    Allgöwer, F
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 663 - 668
  • [50] CONTINUOUS-TIME SYSTEM-IDENTIFICATION ON COMPACT PARAMETER SETS
    TUGNAIT, JK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (05) : 652 - 659