Integer and fractional-order entropy analysis of earthquake data series

被引:39
|
作者
Lopes, Antonio M. [1 ]
Tenreiro Machado, J. A. [2 ]
机构
[1] Univ Porto, Fac Engn, Inst Engn Mech, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
[2] Polytech Porto, Inst Engn, Rua Dr Antonio Bernardino Almeida 431, P-4200072 Oporto, Portugal
关键词
Complex systems; Dynamical systems; Data series; Entropy; Visualization; VISUALIZATION; DYNAMICS; PREDICTION; LAW;
D O I
10.1007/s11071-015-2231-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen-Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen-Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 50 条
  • [1] Integer and fractional-order entropy analysis of earthquake data series
    António M. Lopes
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2016, 84 : 79 - 90
  • [2] Fractional-order stability analysis of earthquake dynamics
    Pelap, F. B.
    Tanekou, G. B.
    Fogang, C. F.
    Kengne, R.
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1673 - 1687
  • [3] Fractional symbolic network entropy analysis for the fractional-order chaotic systems
    He, Shaobo
    Sun, Kehui
    Wu, Xianming
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [4] Synchronization in coupled integer and fractional-order maps
    Pakhare, Sumit S.
    Bhalekar, Sachin
    Gade, Prashant M.
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [5] Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order
    Ma, Chenguang
    Mou, Jun
    Li, Peng
    Liu, Tianming
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (7-8): : 1945 - 1957
  • [6] Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order
    Chenguang Ma
    Jun Mou
    Peng Li
    Tianming Liu
    The European Physical Journal Special Topics, 2021, 230 : 1945 - 1957
  • [7] Fractional-Order Observer for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2101 - 2106
  • [8] Analysis of Networked Control System With Integer-order and Fractional-order PID Controllers
    Vijay R. Dahake
    Mukesh D. Patil
    Vishwesh A. Vyawahare
    International Journal of Control, Automation and Systems, 2024, 22 : 373 - 386
  • [9] Synchronization of a class of fractional-order and integer order hyperchaotic systems
    Wu, Yanping
    Wang, Guodong
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1584 - 1588
  • [10] Analysis of Networked Control System With Integer-order and Fractional-order PID Controllers
    Dahake, Vijay R.
    Patil, Mukesh D.
    Vyawahare, Vishwesh A.
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (02) : 373 - 386