Classification and properties of the -submaximal subgroups in minimal nonsolvable groups

被引:12
|
作者
Guo, Wenbin [1 ]
Revin, Danila O. [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Sobolev Inst Mathematis SB RAS, Novosibirsk, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
Minimal nonsolvable group; Minimal simple group; pi-Maximal subgroup; pi-Submaximal subgroup; Pronormal subgroup; FINITE SIMPLE-GROUPS; HALL SUBGROUPS; SYLOW TYPE; PRONORMALITY; CONJECTURE; EXISTENCE; CRITERION; THEOREM;
D O I
10.1007/s13373-017-0112-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a set of primes. According to H. Wielandt, a subgroup H of a finite group X is called a -submaximal subgroup if there is a monomorphism into a finite group Y such that is subnormal in Y and for a -maximal subgroup K of Y. In his talk at the celebrated conference on finite groups in Santa-Cruz (USA) in 1979, Wielandt posed a series of open questions and among them the following problem: to describe the -submaximal subgroup of the minimal nonsolvable groups and to study properties of such subgroups: the pronormality, the intravariancy, the conjugacy in the automorphism group etc. In the article, for every set of primes, we obtain a description of the -submaximal subgroup in minimal nonsolvable groups and investigate their properties, so we give a solution of Wielandt's problem.
引用
收藏
页码:325 / 351
页数:27
相关论文
共 50 条
  • [41] Finite groups all of whose minimal subgroups are NE∗-subgroups
    YONGGANG LI
    XIANGGUI ZHONG
    Proceedings - Mathematical Sciences, 2014, 124 : 501 - 509
  • [42] The influence of minimal subgroups on the structure of finite groups
    Asaad, M
    Csörgö, P
    ARCHIV DER MATHEMATIK, 1999, 72 (06) : 401 - 404
  • [43] Finite groups with some π-quasinormal minimal subgroups
    Li, Y
    Wang, Y
    ACTA MATHEMATICA HUNGARICA, 2004, 102 (03) : 213 - 222
  • [44] FINITE GROUPS WITH ABNORMAL MINIMAL NONNILPOTENT SUBGROUPS
    Wang, Zhigang
    Cai, Jinzhuan
    Safonova, Inna N.
    Skiba, Alexander N.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (02) : 261 - 270
  • [45] Finite groups with some ?-quasinormal minimal subgroups
    Yangming Li
    Yanming Wang
    Acta Mathematica Hungarica, 2004, 102 : 213 - 222
  • [46] On minimal subgroups of finite groups .2.
    Asaad, M
    Li, SR
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) : 4603 - 4606
  • [47] On PN-groups and the norm of minimal subgroups
    Li, Baojun
    Zhou, Yuzhu
    Gong, Lu
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (06)
  • [48] FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL
    BUCKLEY, J
    MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) : 15 - &
  • [49] The influence of minimal subgroups on the structure of finite groups
    M. Asaad
    P. Csörgö
    Archiv der Mathematik, 1999, 72 : 401 - 404
  • [50] The influence of minimal subgroups on the structure of finite groups
    Wang, YM
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (01): : 63 - 70