A mechanistic macroscopic physical entity with a three-dimensional Hilbert space description

被引:0
|
作者
Aerts, D
Coecke, B
DHooghe, B
Valckenborgh, F
机构
来源
HELVETICA PHYSICA ACTA | 1997年 / 70卷 / 06期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is sometimes stated that Gleason's theorem prevents the construction of hidden-variable models for quantum entities described in a more than two-dimensional Hilbert space. In this paper however we explicitly construct a classical (macroscopic) system that can be represented in a three-dimensional real Hilbert space, the probability structure appearing as the result of a lack of knowledge about the measurement context. We briefly discuss Gleason's theorem from this point of view.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 50 条
  • [21] Chains of Three-Dimensional Evolution Algebras: a Description
    Imomkulov, Anvar
    Velasco, M. Victoria
    FILOMAT, 2020, 34 (10) : 3175 - 3190
  • [22] A History of the Description of the Three-Dimensional Finite Rotation
    Fraiture, Luc
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2009, 57 (1-2): : 207 - 232
  • [23] Three-Dimensional Polarimetry for Wave Chaos Description
    Migliaccio, Maurizio
    Gil, Jose J.
    Sorrentino, Antonio
    Nunziata, Ferdinando
    Ferrara, Giuseppe
    2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2015, : 235 - 239
  • [24] Local description of the three-dimensional wake transition
    Aleksyuk, Andrey, I
    Shkadov, Victor Ya
    JOURNAL OF FLUIDS AND STRUCTURES, 2019, 89 : 72 - 81
  • [25] An analytical description of the three-dimensional swing-by
    Formiga, J. K. S.
    Souza dos Santos, Denilson Paulo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02): : 491 - 506
  • [26] A HISTORY OF THE DESCRIPTION OF THE THREE-DIMENSIONAL FINITE ROTATION
    Fraiture, Luc
    THE F. LANDIS MARKLEY ASTRONAUTICS SYMPOSIUM, 2008, 132 : 835 - 857
  • [27] A History of the Description of the Three-Dimensional Finite Rotation
    Luc Fraiture
    The Journal of the Astronautical Sciences, 2009, 57 : 207 - 232
  • [28] An analytical description of the three-dimensional swing-by
    J. K. S. Formiga
    Denilson Paulo Souza dos Santos
    Computational and Applied Mathematics, 2015, 34 : 491 - 506
  • [29] Three-Dimensional Electromagnetic Void Space
    Xu, Changqing
    Chu, Hongchen
    Luo, Jie
    Hang, ZhiHong
    Wu, Ying
    Lai, Yun
    PHYSICAL REVIEW LETTERS, 2021, 127 (12)
  • [30] Superintegrability in three-dimensional Euclidean space
    Kalnins, EG
    Williams, GC
    Miller, W
    Pogosyan, GS
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 708 - 725