A mechanistic macroscopic physical entity with a three-dimensional Hilbert space description

被引:0
|
作者
Aerts, D
Coecke, B
DHooghe, B
Valckenborgh, F
机构
来源
HELVETICA PHYSICA ACTA | 1997年 / 70卷 / 06期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is sometimes stated that Gleason's theorem prevents the construction of hidden-variable models for quantum entities described in a more than two-dimensional Hilbert space. In this paper however we explicitly construct a classical (macroscopic) system that can be represented in a three-dimensional real Hilbert space, the probability structure appearing as the result of a lack of knowledge about the measurement context. We briefly discuss Gleason's theorem from this point of view.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 50 条
  • [1] Description of the three-dimensional scenic space design process
    Moran, F
    MOBILE AND RAPIDLY ASSEMBLED STRUCTURES II, 1996, : 213 - 218
  • [2] Descriptions of local spins in the three-dimensional physical space
    Alcoba, Diego R.
    Torre, Alicia
    Lain, Luis
    Bochicchio, Roberto C.
    CHEMICAL PHYSICS LETTERS, 2011, 504 (4-6) : 236 - 240
  • [3] Three-dimensional Entity Resolution with JedAI
    Papadakis, George
    Mandilaras, George
    Gagliardelli, Luca
    Simonini, Giovanni
    Thanos, Emmanouil
    Giannakopoulos, George
    Bergamaschi, Sonia
    Palpanas, Themis
    Koubarakis, Manolis
    INFORMATION SYSTEMS, 2020, 93
  • [4] Object recognition based on structural description of images in three-dimensional space
    Ponomarev, S., V
    Lutsiv, V. R.
    Malyshev, I. A.
    JOURNAL OF OPTICAL TECHNOLOGY, 2018, 85 (11) : 703 - 708
  • [5] Algebraic formulation and program generation of three-dimensional Hilbert space-filling curves
    Chen, CS
    Lin, SY
    Huang, CH
    CISST '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, 2004, : 254 - 260
  • [6] Hilbert transform for the three-dimensional Vekua equation
    Delgado, Briceyda B.
    Michael Porter, R.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (11) : 1797 - 1824
  • [7] Quantum Random Access Codes with Mutually Unbiased Bases in Three-Dimensional Hilbert Space
    Yao, Qiankun
    Zhou, Yuqian
    Dong, Yaqi
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY COMPANION, QRS-C, 2022, : 509 - 514
  • [8] THREE-DIMENSIONAL FILTERING USING HILBERT TRANSFORM
    王天禧
    Chinese Science Bulletin, 1990, (02) : 123 - 127
  • [9] Study on three-dimensional models of geological entity
    Shen, D.Y.
    Mao, S.J.
    Li, R.
    Ma, A.N.
    Jisuanji Gongcheng/Computer Engineering, 2001, 27 (03):
  • [10] Pointing in three-dimensional space
    Schoumans, N.
    Sittig, A. C.
    van der Gon, J. J. D.
    PERCEPTION, 1996, 25 : 59 - 59