Accelerating Robot Dynamics Gradients on a CPU, GPU, and FPGA

被引:22
|
作者
Plancher, Brian [1 ]
Neuman, Sabrina M. [1 ]
Bourgeat, Thomas [2 ]
Kuindersma, Scott [1 ,3 ]
Devadas, Srinivas [2 ]
Reddi, Vijay Janapa [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02478 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Boston Dynam, Waltham, MA 02451 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2021年 / 6卷 / 02期
基金
美国国家科学基金会;
关键词
Computer architecture for robotics and automation; hardware-software integration in robotics; dynamics; MODEL-PREDICTIVE CONTROL; TRAJECTORY OPTIMIZATION;
D O I
10.1109/LRA.2021.3057845
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Computing the gradient of rigid body dynamics is a central operation in many state-of-the-art planning and control algorithms in robotics. Parallel computing platforms such as GPUs and FPGAs can offer performance gains for algorithms with hardware-compatible computational structures. In this letter, we detail the designs of three faster than state-of-the-art implementations of the gradient of rigid body dynamics on a CPU, GPU, and FPGA. Our optimized FPGA and GPU implementations provide as much as a 3.0x end-to-end speedup over our optimized CPU implementation by refactoring the algorithm to exploit its computational features, e.g., parallelism at different granularities. We also find that the relative performance across hardware platforms depends on the number of parallel gradient evaluations required.
引用
收藏
页码:2335 / 2342
页数:8
相关论文
共 50 条
  • [1] Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC
    Nurvitadhi, Eriko
    Sheffield, David
    Sim, Jaewoong
    Mishra, Asit
    Venkatesh, Ganesh
    Marr, Debbie
    2016 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2016, : 77 - 84
  • [2] Accelerating Recurrent Neural Networks in Analytics Servers: Comparison of FPGA, CPU, GPU, and ASIC
    Nurvitadhi, Eriko
    Sim, Jaewoong
    Sheffield, David
    Mishra, Asit
    Krishnan, Srivatsan
    Marr, Debbie
    2016 26TH INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2016,
  • [3] BLAS Comparison on FPGA, CPU and GPU
    Kestur, Srinidhi
    Davis, John D.
    Williams, Oliver
    IEEE ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2010), 2010, : 288 - 293
  • [4] Accelerating Kirchhoff Migration by CPU and GPU Cooperation
    Panetta, Jairo
    Teixeira, Thiago
    de Souza Filho, Paulo R. P.
    da Cunha Filho, Carlos A.
    Sotelo, David
    Roxo da Motta, Fernando M.
    Pinheiro, Silvio Sinedino
    Pedrosa Junior, Ivan
    Romanelli Rosa, Andre L.
    Monnerat, Luiz R.
    Carneiro, Leandro T.
    de Albrecht, Carlos H. B.
    PROCEEDINGS OF THE 21ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, 2009, : 26 - 32
  • [5] Population Count on Intel® CPU, GPU, and FPGA
    Jin, Zheming
    Finkel, Hal
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 432 - 439
  • [6] Accelerating MapReduce on a Coupled CPU-GPU Architecture
    Chen, Linchuan
    Huo, Xin
    Agrawal, Gagan
    2012 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2012,
  • [7] Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison
    Juan A. Gomez-Pulido
    Miguel A. Vega-Rodriguez
    Juan M. Sanchez-Perez
    Silvio Priem-Mendes
    Vitor Carreira
    Genetic Programming and Evolvable Machines, 2011, 12 : 403 - 427
  • [8] Accelerating floating-point fitness functions in evolutionary algorithms: a FPGA-CPU-GPU performance comparison
    Gomez-Pulido, Juan A.
    Vega-Rodriguez, Miguel A.
    Sanchez-Perez, Juan M.
    Priem-Mendes, Silvio
    Carreira, Vitor
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2011, 12 (04) : 403 - 427
  • [9] Accelerating Compressive Sensing Reconstruction OMP Algorithm with CPU, GPU, FPGA and Domain Specific Many-Core
    Kulkarni, Amey
    Mohsenin, Tinoosh
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 970 - 973
  • [10] Accelerating Random Forest Classification on GPU and FPGA
    Shah, Milan
    Neff, Reece
    Wu, Hancheng
    Minutoli, Marco
    Tumeo, Antonino
    Becchi, Michela
    51ST INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2022, 2022,