EXISTENCE, BLOW-UP AND EXPONENTIAL DECAY FOR KIRCHHOFF-LOVE EQUATIONS WITH DIRICHLET CONDITIONS

被引:0
|
作者
Nguyen Anh Triet [1 ]
Vo Thi Tuyet Mai [2 ,3 ]
Le Thi Phuong Ngoc [4 ]
Nguyen Thanh Long [3 ]
机构
[1] Univ Architecture Ho Chi Minh City, Dept Math, 196 Pasteur Str,Dist 3, Ho Chi Minh City, Vietnam
[2] Univ Nat Resources & Environm Ho Chi Minh City, 236B Le Van Sy Str,Ward 1, Ho Chi Minh City, Vietnam
[3] VNUHCM Univ Sci, Dept Math & Comp Sci, 227 Nguyen Van Cu Str,Dist 5, Ho Chi Minh City, Vietnam
[4] Univ Khanh Hoa, 01 Nguyen Chanh Str, Nha Trang City, Vietnam
关键词
Nonlinear Kirchhoff-Love equation; blow-up; exponential decay; NONLINEAR-WAVE EQUATION; BOUNDARY-CONDITIONS; 2-POINT TYPE; DISSIPATION; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article concerns the initial boundary value problem for a nonlinear Kirchhoff-Love equation. First, by applying the Faedo-Galerkin, we prove existence and uniqueness of a solution. Next, by constructing Lyapunov functional, we prove a blow-up of the solution with a negative initial energy, and establish a sufficient condition for the exponential decay of weak solutions.
引用
收藏
页数:26
相关论文
共 50 条